NewDataFittingService.java 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610
  1. package com.gyee.power.fitting.service.custom.curve;
  2. import com.gyee.power.fitting.common.alg.DBSCANPointALG;
  3. import com.gyee.power.fitting.common.alg.PowerFittingALG;
  4. import com.gyee.power.fitting.common.alg.PowerProcessALG;
  5. import com.gyee.power.fitting.common.alg.WindDirectionALG;
  6. import com.gyee.power.fitting.common.config.GyeeConfig;
  7. import com.gyee.power.fitting.common.constants.Constants;
  8. import com.gyee.power.fitting.common.feign.RemoteServiceBuilder;
  9. import com.gyee.power.fitting.common.spring.InitialRunner;
  10. import com.gyee.power.fitting.common.util.DateUtil;
  11. import com.gyee.power.fitting.common.util.FileUtil;
  12. import com.gyee.power.fitting.common.util.NumberUtil;
  13. import com.gyee.power.fitting.common.util.SnowFlakeUtil;
  14. import com.gyee.power.fitting.model.*;
  15. import com.gyee.power.fitting.model.ProBasicModelPower;
  16. import com.gyee.power.fitting.model.anno.AnnotationTool;
  17. import com.gyee.power.fitting.model.anno.FixedVo;
  18. import com.gyee.power.fitting.model.custom.*;
  19. import com.gyee.power.fitting.service.ProEconPowerFittingAnalySisService;
  20. import lombok.extern.slf4j.Slf4j;
  21. import lombok.val;
  22. import org.apache.commons.lang3.StringUtils;
  23. import org.springframework.beans.factory.annotation.Autowired;
  24. import org.springframework.stereotype.Service;
  25. import javax.annotation.Resource;
  26. import java.io.File;
  27. import java.text.DecimalFormat;
  28. import java.util.*;
  29. import java.util.concurrent.TimeUnit;
  30. import java.util.concurrent.atomic.AtomicReference;
  31. import java.util.function.Predicate;
  32. import java.util.stream.Collectors;
  33. @Slf4j
  34. @Service
  35. public class NewDataFittingService {
  36. @Autowired
  37. private GyeeConfig config;
  38. @Autowired
  39. private RemoteServiceBuilder remoteService;
  40. @Autowired
  41. private ProEconPowerFittingAnalySisService proEconPowerFittingAnalySisService;
  42. @Resource
  43. private DataScanService dataScanService;
  44. //数据map
  45. private Map<String, String> prepareMap = null;//数据准备map
  46. private Map<String, String> processMap = null;//数据处理map
  47. private Map<String, String> fittingMap = null;//数据拟合map
  48. /**
  49. * 数据准备拟合
  50. * @param vo
  51. * @return
  52. */
  53. public ProEconPowerFittingAnalySis newDataFitting(NewDataFittingVo vo) {
  54. prepareMap = new HashMap<>();
  55. processMap = new HashMap<>();
  56. fittingMap = new HashMap<>();
  57. //1.数据获取
  58. List<String> wtIds = Arrays.asList(vo.getWtIds().split(","));
  59. deleteDir(config.getFilePathPrepare());
  60. for (int k = 0; k < wtIds.size(); k++) {
  61. String wt = wtIds.get(k);
  62. List<List<TsDoubleData>> result = new ArrayList<>();
  63. try {
  64. List<String> points = config.getPoints();
  65. Map<String, List<ProBasicEquipmentPoint>> collect = InitialRunner.pointNewMap.get(wt).stream().collect(Collectors.groupingBy(w -> w.getUniformCode()));
  66. if (collect.size() < 8)
  67. continue;
  68. for (int i = 0; i < points.size(); i++) {
  69. ProBasicEquipmentPoint point = collect.get(points.get(i)).get(0);
  70. log.info("测点:" + point.getId() + "----" + point.getName());
  71. List<TsDoubleData> data = remoteService.adapterfd().getHistorySnap(point.getNemCode(), vo.getSt(), vo.getEt(), vo.getInterval());
  72. if (data == null || data.size() < 0)
  73. break;
  74. result.add(data);
  75. TimeUnit.MILLISECONDS.sleep(200);
  76. }
  77. if (result.size() != points.size())
  78. continue;
  79. String content = prepareAssemble(result);
  80. // 处理的数据保存在本地
  81. String wtCode = InitialRunner.wtNewMap.get(wt).getId();
  82. String wtCode2 = InitialRunner.wtNewMap.get(wt).getNemCode();
  83. String fileName = config.getFilePathPrepare() + vo.getStation() + "_" + wtCode + "_" + System.currentTimeMillis() / 1000 + ".csv";
  84. boolean flag = FileUtil.writeFile(fileName, content);
  85. if (flag){ // TODO 保存数据库
  86. ProEconPowerFittingAnalySis obj = new ProEconPowerFittingAnalySis();
  87. obj.setStation(vo.getStation());
  88. obj.setStationcn(InitialRunner.stationNewMap.get(vo.getStation()));
  89. obj.setWindturbineId(wt);
  90. obj.setCode(wtCode2);
  91. obj.setTime(DateUtil.format(vo.getSt(), DateUtil.YYYY_MM_DD_CHN) + "-" + DateUtil.format(vo.getEt(), DateUtil.YYYY_MM_DD_CHN));
  92. obj.setInterval(NumberUtil.toNum(vo.getInterval()));
  93. obj.setPath(fileName);
  94. obj.setType(Constants.DATA_PREPARE);
  95. obj.setInterp(vo.getInterval());
  96. proEconPowerFittingAnalySisService.saveOrUpdate(obj);
  97. prepareMap.put(obj.getId(),fileName);//保存拿到的数据
  98. }
  99. System.out.println("数据准备完成:" + wt);
  100. } catch (Exception e) {
  101. e.printStackTrace();
  102. }
  103. }
  104. //2.数据筛选
  105. try {
  106. deleteDir(config.getFilePathProcess());
  107. for (String key : prepareMap.keySet()){
  108. ProEconPowerFittingAnalySis obj = proEconPowerFittingAnalySisService.getById(key);
  109. /** 读取csv数据 转换成对象数组 **/
  110. List<PowerPointData> eis = new ArrayList<>();
  111. List<String> list = FileUtil.readFile(prepareMap.get(key), true);
  112. for (int i = 1; i < list.size(); i++) {
  113. eis.add(new PowerPointData(list.get(i).split(","), false));
  114. }
  115. /** 风速 -> 保证功率 来自数据库 **/
  116. List<ProBasicModelPower> modelPowerList = InitialRunner.modelPowerDetailNewMap.get(InitialRunner.wtNewMap.get(obj.getWindturbineId()).getModelId());
  117. Map<Double, Double> modelPowerMap = modelPowerList.stream().collect(Collectors.toMap(ProBasicModelPower::getSpeed, ProBasicModelPower::getEnsurePower));
  118. /** 数据预处理 **/
  119. List<PowerPointData> data = PowerProcessALG.dataProcess(eis, modelPowerMap, vo.getMaxs(), vo.getMins(), vo.getMaxp(), vo.getMinp(), vo.getIsfbw(), vo.getIsfhl(), vo.getIsbw(), vo.getIstj(), vo.getIsglpc(), vo.getIsqfh(), vo.getQfhdj());
  120. /** 静风频率 **/
  121. List<Double> ls = WindDirectionALG.frequency(data.stream().map(PowerPointData::getSpeed).collect(Collectors.toList()), 3);
  122. double frequency = ls.get(0);
  123. double speed = ls.get(1);
  124. String content = processAssemble(data);
  125. String fileName = config.getFilePathProcess() + vo.getStation() + "_" + obj.getWindturbineId() + "_" + SnowFlakeUtil.generateIdL() / 100000 + ".csv";
  126. boolean flag = FileUtil.writeFile(fileName, content);
  127. if (flag) { // TODO 保存数据库
  128. obj.setId(null);
  129. obj.setPath(fileName);
  130. obj.setFrequency(frequency);
  131. obj.setSpeedavg(speed);
  132. obj.setType(Constants.DATA_PROCESS);
  133. proEconPowerFittingAnalySisService.saveOrUpdate(obj);
  134. processMap.put(obj.getId(),fileName);//保存预处理的的数据
  135. }
  136. System.out.println("功率曲线拟合数据预处理完成:" + obj.getWindturbineId());
  137. }
  138. } catch (Exception e) {
  139. e.printStackTrace();
  140. }
  141. //3.数据拟合
  142. AtomicReference<ProEconPowerFittingAnalySis> object = new AtomicReference<>();
  143. deleteDir(config.getFilePathFitting());
  144. if (vo.getMode() == 0){ //单台拟合
  145. for (String processkey : processMap.keySet()){
  146. List<ProEconPowerFittingAnalySis> list = proEconPowerFittingAnalySisService.selectListByIds(processkey);
  147. List<Double> arraySpeed = new ArrayList<>();
  148. List<Double> arrayPower = new ArrayList<>();
  149. List<String> line = FileUtil.readFile(processMap.get(processkey), true);
  150. csvParse(line, arraySpeed, arrayPower, vo.getMins(), vo.getMaxs(), vo.getMinp(), vo.getMaxp());
  151. List<ProBasicModelPower> mp = InitialRunner.modelPowerDetailNewMap.get(InitialRunner.wtNewMap.get(list.get(0).getWindturbineId()).getModelId());
  152. Double maxP = mp.stream().map(ProBasicModelPower::getEnsurePower).max(Comparator.comparing(Double::doubleValue)).get();
  153. object.set(fittingMode(list, maxP, arraySpeed, arrayPower, vo.getDimension(), vo.getMode()));
  154. }
  155. }
  156. if (vo.getMode() == 1){ //合并拟合
  157. AtomicReference<Double> maxP = new AtomicReference<>(0.0);
  158. List<Double> arraySpeed = new ArrayList<>();
  159. List<Double> arrayPower = new ArrayList<>();
  160. StringBuffer ids = new StringBuffer();
  161. for (String processkey : processMap.keySet()){
  162. ids.append(processkey).append(",");
  163. ProEconPowerFittingAnalySis fittingAnalySis = proEconPowerFittingAnalySisService.getById(processkey);
  164. List<String> line = FileUtil.readFile(processMap.get(processkey), true);
  165. csvParse(line, arraySpeed, arrayPower, vo.getMins(), vo.getMaxs(), vo.getMinp(), vo.getMaxp());
  166. List<ProBasicModelPower> mp = InitialRunner.modelPowerDetailNewMap.get(InitialRunner.wtNewMap.get(fittingAnalySis.getWindturbineId()).getModelId());
  167. Double maxPower = mp.stream().map(ProBasicModelPower::getEnsurePower).max(Comparator.comparing(Double::doubleValue)).get();
  168. if (maxPower > maxP.get()) maxP.set(maxPower);
  169. }
  170. List<ProEconPowerFittingAnalySis> list = proEconPowerFittingAnalySisService.selectListByIds(ids.toString());
  171. object.set(fittingMode(list, maxP.get(), arraySpeed, arrayPower, vo.getDimension(), vo.getMode()));
  172. }
  173. if (vo.getMode() == 2){ //同名拟合(暂时不支持)
  174. //// List<ProEconPowerFittingAnalySis> list = powerService.selectListByIds(ids);
  175. // Map<String, List<ProEconPowerFittingAnalySis>> map = list.stream().collect(Collectors.groupingBy(d -> d.getWindturbine()));
  176. // map.forEach((k, ls) -> {
  177. // if (ls.size() > 1){
  178. // double maxP = 0;
  179. // List<ProBasicModelPower> mp = null;
  180. // List<Double> arraySpeed = new ArrayList<>();
  181. // List<Double> arrayPower = new ArrayList<>();
  182. // for (ProEconPowerFittingAnalySis obj : ls){
  183. // List<String> line = FileUtil.readFile(obj.getPath(), true);
  184. // csvParse(line, arraySpeed, arrayPower, mins, maxs, minp, maxp);
  185. // mp = InitialRunner.modelPowerDetailMap.get(InitialRunner.wtMap.get(obj.getWindturbine()).getModelid());
  186. // maxP = mp.stream().map(ProBasicModelPower::getEnsurepower).max(Comparator.comparing(Double::doubleValue)).get();
  187. // }
  188. // object.set(fittingMode(ls, maxP, arraySpeed, arrayPower, dimension, mode));
  189. // }else {
  190. // for (ProEconPowerFittingAnalySis obj : ls) {
  191. // List<ProEconPowerFittingAnalySis> collect = new ArrayList<>();
  192. // collect.add(obj);
  193. // List<Double> arraySpeed = new ArrayList<>();
  194. // List<Double> arrayPower = new ArrayList<>();
  195. // List<String> line = FileUtil.readFile(collect.get(0).getPath(), true);
  196. // csvParse(line, arraySpeed, arrayPower, mins, maxs, minp, maxp);
  197. // List<ProBasicModelPower> mp = InitialRunner.modelPowerDetailMap.get(InitialRunner.wtMap.get(list.get(0).getWindturbine()).getModelid());
  198. // Double maxP = mp.stream().map(ProBasicModelPower::getEnsurepower).max(Comparator.comparing(Double::doubleValue)).get();
  199. // object.set(fittingMode(collect, maxP, arraySpeed, arrayPower, dimension, mode));
  200. // }
  201. // }
  202. // });
  203. }
  204. fittingMap.put(object.get().getId(),object.get().getPath());
  205. return object.get();
  206. }
  207. /**
  208. * 曲线,散点等数据
  209. * 风速 eg:[1,2,3,4。。。。]
  210. * 曲线 eg:[1,2,3,4。。。。]
  211. * 散点 eg:[[1,2],[3,2],[3,5]。。。。。]
  212. * @param id
  213. * @return
  214. */
  215. public Map<String, Object> dataFittingCurve(String id){
  216. Map<String, Object> map = new HashMap<>();
  217. ProEconPowerFittingAnalySis obj = proEconPowerFittingAnalySisService.selectItemById(id);
  218. //实际功率、风速、Cp值
  219. List<Object> sjglList = new ArrayList<>();
  220. List<Object> cpzList = new ArrayList<>();
  221. List<String> ls = FileUtil.readFile(obj.getPath(), true);
  222. for (int i = 1; i < ls.size(); i++){
  223. PowerFittingData data = new PowerFittingData(ls.get(i).split(","));
  224. sjglList.add(new double[]{Double.valueOf(data.getSpeed()), data.getNhdata()});
  225. cpzList.add(new double[]{Double.valueOf(data.getSpeed()), data.getCpdata()});
  226. }
  227. //保证功率
  228. List<ProBasicModelPower> modelPower = InitialRunner.modelPowerDetailNewMap.get(InitialRunner.wtNewMap.get(obj.getWindturbineId()).getModelId());
  229. List<Object> bzglList = modelPower.stream().sorted(Comparator.comparing(ProBasicModelPower::getSpeed)).map(m -> new double[]{m.getSpeed(), m.getEnsurePower()}).collect(Collectors.toList());
  230. //散点
  231. String[] ids = obj.getProcessid().split(",");
  232. List<PowerPointData> yyd = new ArrayList<>(); //有用点
  233. List<PowerPointData> wyd = new ArrayList<>(); //无用点
  234. for (String pid : ids){
  235. ProEconPowerFittingAnalySis pf = proEconPowerFittingAnalySisService.selectItemById(pid);
  236. List<String> lp = FileUtil.readFile(pf.getPath(), true);
  237. for (int i = 1; i < lp.size(); i++){
  238. String[] split = lp.get(i).split(",");
  239. PowerPointData pd = new PowerPointData(split, true);
  240. if (pd.getSpeed() < 0 || pd.getPower() < 0)
  241. continue;
  242. pd.setWtId(pf.getWindturbineId());
  243. if (0 == pd.getFilter())
  244. yyd.add(pd); //没有过滤
  245. if (1 == pd.getFilter())
  246. wyd.add(pd); //已过滤
  247. }
  248. }
  249. dataScanService.setMapYY(DBSCANPointALG.dbscan(yyd, 10));
  250. dataScanService.setMapWY(DBSCANPointALG.dbscan(wyd, 10));
  251. List<PointVo> listYY = new ArrayList<>();
  252. List<PointVo> listWY = new ArrayList<>();
  253. dataScanService.getMapYY().forEach((k, v) -> {
  254. // k: 前端画圈时的散点数据标记
  255. listYY.add(new PointVo(v.get(0).getSpeed(), v.get(0).getPower(), dataScanService.getMapYY().get(k).size() + 3, k));
  256. });
  257. dataScanService.getMapWY().forEach((k, v) -> {
  258. // k: 前端画圈时的散点数据标记
  259. listWY.add(new PointVo(v.get(0).getSpeed(), v.get(0).getPower(), dataScanService.getMapWY().get(k).size() + 3, k));
  260. });
  261. map.put("sjgl", sjglList); //实际功率
  262. map.put("llgl", bzglList); //保证功率
  263. map.put("cpz", cpzList); //Cp值
  264. map.put("obj", obj); //对w象
  265. map.put("yyd", listYY); //有用散点
  266. map.put("wyd", listWY); //无用散点
  267. return map;
  268. }
  269. /**
  270. * 通过大点的key获取小散点
  271. * @param yk
  272. * @param wk
  273. * @return
  274. */
  275. public List<PowerPointData> dataOrigin(String yk, String wk) {
  276. List<PowerPointData> list = new ArrayList<>();
  277. if (!StringUtils.isEmpty(yk)){
  278. String[] key = yk.split(",");
  279. for (String k : key){
  280. list.addAll(dataScanService.getMapYY().get(k));
  281. }
  282. }
  283. if (!StringUtils.isEmpty(wk)){
  284. String[] kew = wk.split(",");
  285. for (String k : kew){
  286. list.addAll(dataScanService.getMapWY().get(k));
  287. }
  288. }
  289. return list;
  290. }
  291. /**
  292. * 组装表格数据
  293. * @param id
  294. * @return
  295. */
  296. public Map<String, Object> dataFittingShow(String id){
  297. Map<String, Object> map = new HashMap<>();
  298. /** 添加标题 **/
  299. List<FixedVo> fxList = AnnotationTool.getFixedVoList(PowerFittingData.class);
  300. List<TableTitle> lt = fxList.stream().filter(f -> f.getRemark().equals("1"))
  301. .map(d -> new TableTitle(d.getName(), d.getDes())).collect(Collectors.toList());
  302. /** 添加内容 **/
  303. List<PowerFittingData> list = new ArrayList<>();
  304. ProEconPowerFittingAnalySis obj = proEconPowerFittingAnalySisService.selectItemById(id);
  305. List<String> ls = FileUtil.readFile(obj.getPath(), false);
  306. for (int i = 1; i < ls.size(); i++){
  307. PowerFittingData data = new PowerFittingData(ls.get(i).split(","));
  308. list.add(data);
  309. }
  310. map.put("title", lt);
  311. map.put("data", list);
  312. return map;
  313. }
  314. private String prepareAssemble(List<List<TsDoubleData>> list){
  315. if (list.size() == 0)
  316. return null;
  317. StringBuilder sb = setTitle();
  318. List<TsDoubleData> data = list.get(0);
  319. for (int i = 0; i < data.size(); i++){
  320. sb.append(DateUtil.format(data.get(i).getTs(), DateUtil.DATE_TIME_PATTERN)).append(",");
  321. sb.append(data.get(i).getDoubleValue()).append(",");
  322. for (int j = 1; j < list.size(); j++){
  323. //
  324. if(null != list.get(j) && list.get(j).size()>0){
  325. sb.append(list.get(j).get(i).getDoubleValue()).append(",");
  326. }else {
  327. sb.append(0).append(",");
  328. }
  329. }
  330. sb.deleteCharAt(sb.lastIndexOf(","));
  331. sb.append("\n");
  332. }
  333. return sb.toString();
  334. }
  335. private String processAssemble(List<PowerPointData> list) {
  336. StringBuilder sb = setTitle();
  337. for (PowerPointData obj : list){
  338. List<FixedVo> ls = AnnotationTool.getValueList(obj);
  339. String data = ls.stream().filter(f -> !StringUtils.isEmpty(f.getRemark())).map(FixedVo::getKey).collect(Collectors.joining(","));
  340. sb.append(data).append("\n");
  341. }
  342. return sb.toString();
  343. }
  344. private StringBuilder setTitle(){
  345. StringBuilder sb = new StringBuilder();
  346. val list = AnnotationTool.getFixedVoList(PowerPointData.class);
  347. String columnName = list.stream().filter(f -> f.getRemark().equals("1")).map(FixedVo::getDes).collect(Collectors.joining(","));
  348. sb.append(columnName).append("\n");
  349. return sb;
  350. }
  351. /** 读取csv数据 转换成对象数组 **/
  352. private void csvParse(List<String> line, List<Double> arrayS, List<Double> arrayP, double mins, double maxs, double minp, double maxp){
  353. for (int i = 1; i < line.size(); i++) {
  354. String[] split = line.get(i).split(",");
  355. PowerPointData data = new PowerPointData(split, true);//是否过滤 0:没过滤 1:过滤
  356. double x = data.getSpeed(); //风速
  357. double y = data.getPower(); //功率
  358. int filter = data.getFilter();
  359. if (filter == 0 && (x >= mins && x <= maxs && y >= minp && y <= maxp)) {
  360. arrayS.add(x);
  361. arrayP.add(y);
  362. }
  363. }
  364. }
  365. private ProEconPowerFittingAnalySis fittingMode(List<ProEconPowerFittingAnalySis> list, Double powerMax, List<Double> arraySpeed, List<Double> arrayPower, Integer dimension, int mode){
  366. if (list == null || list.size() == 0)
  367. return null;
  368. ProEconPowerFittingAnalySis obj = list.get(0);
  369. //风速0-25,数据不全拟合的则不全,需要补一下
  370. arraySpeed.add(0.0);
  371. arraySpeed.add(25.01);
  372. arrayPower.add(0.0);
  373. arrayPower.add(powerMax);
  374. double[] arrX = arraySpeed.stream().sorted().mapToDouble(i->i).toArray();
  375. double[] arrY = arrayPower.stream().sorted().mapToDouble(i->i).toArray();
  376. //功率曲线拟合 不合理数据过滤
  377. List<Point> temp = PowerFittingALG.buildLine(arrX, arrY, arraySpeed.size(), dimension, 0.01);
  378. //推力系数 CP值
  379. LineCurveFitting lf = new LineCurveFitting();
  380. lf.setYLines(temp);
  381. lf = PowerFittingALG.buildCp(InitialRunner.equipmentNewMap.get(InitialRunner.wtNewMap.get(obj.getWindturbineId()).getModelId()).getSweptArea(), lf);
  382. lf.getCpValue().forEach(f -> {if(f.getX() <= 2.5) f.setY(0);});
  383. //曲线偏差率
  384. dataCurveRatio(lf, obj);
  385. String content = fittingAssemble(lf);
  386. String processId = "";
  387. String fileName = null;
  388. if (mode == 0){
  389. processId = obj.getId();
  390. fileName = config.getFilePathFitting() + obj.getStation() + "_" + obj.getCode() + "_" + SnowFlakeUtil.generateIdL() / 100000 + ".csv";
  391. }
  392. if (mode == 1){
  393. processId = list.stream().map(d -> d.getId()).collect(Collectors.joining(","));
  394. fileName = config.getFilePathFitting() + obj.getStation() + "_merge" + "_" + SnowFlakeUtil.generateIdL() / 100000 + ".csv";
  395. }
  396. if (mode == 2){
  397. processId = list.stream().map(d -> d.getId()).collect(Collectors.joining(","));
  398. fileName = config.getFilePathFitting() + obj.getStation() + "_same" + "_" + SnowFlakeUtil.generateIdL() / 100000 + ".csv";
  399. }
  400. boolean flag = FileUtil.writeFile(fileName, content);
  401. if (flag) { // TODO 保存数据库
  402. obj.setId(null);
  403. obj.setPath(fileName);
  404. obj.setProcessid(processId);
  405. obj.setCpavg(lf.getCpAvg());
  406. obj.setType(Constants.DATA_FITTING);
  407. proEconPowerFittingAnalySisService.saveOrUpdate(obj);
  408. }
  409. System.out.println("功率曲线拟合完成:" + obj.getWindturbineId());
  410. return obj;
  411. }
  412. /**
  413. * 曲线偏差率 分段的+全部的
  414. * 3-5 5-10 10-12 12-25
  415. * @return
  416. */
  417. private void dataCurveRatio(LineCurveFitting lf, ProEconPowerFittingAnalySis obj) {
  418. DecimalFormat df = new DecimalFormat("0.00");
  419. try{
  420. //风速、实际功率
  421. List<Point> point = new ArrayList<>(); //3-25m
  422. List<Point> point5 = new ArrayList<>(); //分段
  423. List<Point> point10 = new ArrayList<>(); //分段
  424. List<Point> point12= new ArrayList<>(); //分段
  425. List<Point> point25 = new ArrayList<>(); //分段
  426. List<Point> line = lf.getYLines();
  427. for (int i = 1; i < line.size(); i++){
  428. double speed = Double.valueOf(df.format(line.get(i).getX()));
  429. if (speed >= 3 && speed < 5)
  430. point5.add(new Point(speed, line.get(i).getY()));
  431. if (speed >= 5 && speed < 10)
  432. point10.add(new Point(speed, line.get(i).getY()));
  433. if (speed >= 10 && speed < 12)
  434. point12.add(new Point(speed, line.get(i).getY()));
  435. if (speed >= 12 && speed <= 25)
  436. point25.add(new Point(speed, line.get(i).getY()));
  437. if (speed >= 3 && speed <= 25){
  438. point.add(new Point(speed, line.get(i).getY()));
  439. }
  440. }
  441. //保证功率
  442. List<Point> points = new ArrayList<>(); //3-25m
  443. List<Point> points5 = new ArrayList<>(); //分段
  444. List<Point> points10 = new ArrayList<>(); //分段
  445. List<Point> points12 = new ArrayList<>(); //分段
  446. List<Point> points25 = new ArrayList<>(); //分段
  447. List<ProBasicModelPower> list = InitialRunner.modelPowerDetailNewMap.get(InitialRunner.wtNewMap.get(obj.getWindturbineId()).getModelId());
  448. for (int i = 0; i < list.size(); i++){
  449. ProBasicModelPower power = list.get(i);
  450. if (power.getSpeed() >= 3 && power.getSpeed() < 5)
  451. points5.add(new Point(power.getSpeed(), power.getEnsurePower()));
  452. if (power.getSpeed() >= 5 && power.getSpeed() < 10)
  453. points10.add(new Point(power.getSpeed(), power.getEnsurePower()));
  454. if (power.getSpeed() >= 10 && power.getSpeed() < 12)
  455. points12.add(new Point(power.getSpeed(), power.getEnsurePower()));
  456. if (power.getSpeed() >= 12 && power.getSpeed() <= 25)
  457. points25.add(new Point(power.getSpeed(), power.getEnsurePower()));
  458. if (power.getSpeed() >= 3 && power.getSpeed() <= 25)
  459. points.add(new Point(power.getSpeed(), power.getEnsurePower()));
  460. }
  461. double maxp5 = list.stream().filter(f -> 5.0 == f.getSpeed()).collect(Collectors.toList()).get(0).getEnsurePower();
  462. double maxp10 = list.stream().filter(f -> 10.0 == f.getSpeed()).collect(Collectors.toList()).get(0).getEnsurePower();
  463. double maxp12 = list.stream().filter(f -> 12.0 == f.getSpeed()).collect(Collectors.toList()).get(0).getEnsurePower();
  464. double maxp25 = list.stream().filter(f -> 25.0 == f.getSpeed()).collect(Collectors.toList()).get(0).getEnsurePower();
  465. //曲线偏差率
  466. double pcl = PowerFittingALG.curveDeviationRatio2(point, points, maxp25, 3, 25);
  467. double pcl5 = PowerFittingALG.curveDeviationRatio2(point5, points5, maxp5, 3, 5);
  468. double pcl10 = PowerFittingALG.curveDeviationRatio2(point10, points10, maxp10, 5, 10);
  469. double pcl12 = PowerFittingALG.curveDeviationRatio2(point12, points12, maxp12, 10, 12);
  470. double pcl25 = PowerFittingALG.curveDeviationRatio2(point25, points25, maxp25, 12, 25);
  471. obj.setPcratio(Double.valueOf(df.format(pcl)));
  472. obj.setPc5ratio(Double.valueOf(df.format(pcl5)));
  473. obj.setPc10ratio(Double.valueOf(df.format(pcl10)));
  474. obj.setPc12ratio(Double.valueOf(df.format(pcl12)));
  475. obj.setPc25ratio(Double.valueOf(df.format(pcl25)));
  476. } catch (Exception e){
  477. log.error("DataFittingService--dataCurveRatio",e);
  478. }
  479. }
  480. private String fittingAssemble(LineCurveFitting lf){
  481. StringBuilder sb = setTitle();
  482. for (int i = 0; i < lf.getYLines().size(); i++){
  483. Point cp = lf.getCpValue().get(i);
  484. Point gl = lf.getYLines().get(i);
  485. String stx = String.format("%.2f", gl.getX());
  486. double x = Double.parseDouble(stx);
  487. String sty = String.format("%.2f", gl.getY());
  488. double y = Double.parseDouble(sty);
  489. String stcp = String.format("%.4f", cp.getY());
  490. double z = Double.parseDouble(stcp);
  491. sb.append(x).append(",").append(y).append(",").append(z).append("\n");
  492. }
  493. return sb.toString();
  494. }
  495. private boolean deleteDir(String path){
  496. boolean b =false;
  497. File directory = new File(path);
  498. for (File file: Objects.requireNonNull(directory.listFiles())) {
  499. if (!file.isDirectory()) {
  500. b = file.delete();
  501. if(!b){
  502. return b;
  503. }
  504. }
  505. }
  506. return b;
  507. }
  508. }