NewDataFittingService.java 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513
  1. package com.gyee.power.fitting.service.custom.curve;
  2. import com.gyee.power.fitting.common.alg.DBSCANPointALG;
  3. import com.gyee.power.fitting.common.alg.PowerFittingALG;
  4. import com.gyee.power.fitting.common.alg.PowerProcessALG;
  5. import com.gyee.power.fitting.common.alg.WindDirectionALG;
  6. import com.gyee.power.fitting.common.config.GyeeConfig;
  7. import com.gyee.power.fitting.common.constants.Constants;
  8. import com.gyee.power.fitting.common.feign.RemoteServiceBuilder;
  9. import com.gyee.power.fitting.common.spring.InitialRunner;
  10. import com.gyee.power.fitting.common.util.DateUtil;
  11. import com.gyee.power.fitting.common.util.FileUtil;
  12. import com.gyee.power.fitting.common.util.NumberUtil;
  13. import com.gyee.power.fitting.common.util.SnowFlakeUtil;
  14. import com.gyee.power.fitting.model.*;
  15. import com.gyee.power.fitting.model.ProBasicModelPower;
  16. import com.gyee.power.fitting.model.anno.AnnotationTool;
  17. import com.gyee.power.fitting.model.anno.FixedVo;
  18. import com.gyee.power.fitting.model.custom.*;
  19. import com.gyee.power.fitting.service.ProEconPowerFittingAnalySisService;
  20. import lombok.extern.slf4j.Slf4j;
  21. import lombok.val;
  22. import org.apache.commons.lang3.StringUtils;
  23. import org.springframework.beans.factory.annotation.Autowired;
  24. import org.springframework.stereotype.Service;
  25. import javax.annotation.Resource;
  26. import java.text.DecimalFormat;
  27. import java.util.*;
  28. import java.util.concurrent.TimeUnit;
  29. import java.util.concurrent.atomic.AtomicReference;
  30. import java.util.stream.Collectors;
  31. @Slf4j
  32. @Service
  33. public class NewDataFittingService {
  34. @Autowired
  35. private GyeeConfig config;
  36. @Autowired
  37. private RemoteServiceBuilder remoteService;
  38. @Autowired
  39. private ProEconPowerFittingAnalySisService proEconPowerFittingAnalySisService;
  40. @Resource
  41. private DataScanService dataScanService;
  42. //数据map
  43. private Map<String, String> prepareMap = null;//数据准备map
  44. private Map<String, String> processMap = null;//数据处理map
  45. private Map<String, String> fittingMap = null;//数据拟合map
  46. /**
  47. * 数据准备拟合
  48. * @param vo
  49. * @return
  50. */
  51. public ProEconPowerFittingAnalySis newDataFitting(NewDataFittingVo vo) {
  52. prepareMap = new HashMap<>();
  53. processMap = new HashMap<>();
  54. fittingMap = new HashMap<>();
  55. //1.数据获取
  56. List<String> wtIds = Arrays.asList(vo.getWtIds().split(","));
  57. for (int k = 0; k < wtIds.size(); k++) {
  58. String wt = wtIds.get(k);
  59. List<List<TsDoubleData>> result = new ArrayList<>();
  60. try {
  61. List<String> points = config.getPoints();
  62. Map<String, List<ProBasicEquipmentPoint>> collect = InitialRunner.pointNewMap.get(wt).stream().collect(Collectors.groupingBy(w -> w.getUniformCode()));
  63. if (collect.size() < 8)
  64. continue;
  65. for (int i = 0; i < points.size(); i++) {
  66. ProBasicEquipmentPoint point = collect.get(points.get(i)).get(0);
  67. log.info("测点:" + point.getId() + "----" + point.getName());
  68. List<TsDoubleData> data = remoteService.adapter().getHistorySnap(point.getNemCode(), vo.getSt(), vo.getEt(), vo.getInterval());
  69. if (data == null || data.size() < 0)
  70. break;
  71. result.add(data);
  72. TimeUnit.MILLISECONDS.sleep(200);
  73. }
  74. if (result.size() != points.size())
  75. continue;
  76. String content = prepareAssemble(result);
  77. // 处理的数据保存在本地
  78. String wtCode = InitialRunner.wtNewMap.get(wt).getId();
  79. String fileName = config.getFilePathPrepare() + vo.getStation() + "_" + wtCode + "_" + System.currentTimeMillis() / 1000 + ".csv";
  80. boolean flag = FileUtil.writeFile(fileName, content);
  81. if (flag){ // TODO 保存数据库
  82. ProEconPowerFittingAnalySis obj = new ProEconPowerFittingAnalySis();
  83. obj.setStation(vo.getStation());
  84. obj.setStationcn(InitialRunner.stationNewMap.get(vo.getStation()));
  85. obj.setWindturbineId(wt);
  86. obj.setCode(wtCode);
  87. obj.setTime(DateUtil.format(vo.getSt(), DateUtil.YYYY_MM_DD_CHN) + "-" + DateUtil.format(vo.getEt(), DateUtil.YYYY_MM_DD_CHN));
  88. obj.setInterval(NumberUtil.toNum(vo.getInterval()));
  89. obj.setPath(fileName);
  90. obj.setType(Constants.DATA_PREPARE);
  91. obj.setInterp(vo.getInterval());
  92. proEconPowerFittingAnalySisService.saveOrUpdate(obj);
  93. prepareMap.put(obj.getId(),fileName);//保存拿到的数据
  94. }
  95. System.out.println("数据准备完成:" + wt);
  96. } catch (Exception e) {
  97. e.printStackTrace();
  98. }
  99. }
  100. //2.数据筛选
  101. try {
  102. for (String key : prepareMap.keySet()){
  103. ProEconPowerFittingAnalySis obj = proEconPowerFittingAnalySisService.getById(key);
  104. /** 读取csv数据 转换成对象数组 **/
  105. List<PowerPointData> eis = new ArrayList<>();
  106. List<String> list = FileUtil.readFile(prepareMap.get(key), true);
  107. for (int i = 1; i < list.size(); i++) {
  108. eis.add(new PowerPointData(list.get(i).split(","), false));
  109. }
  110. /** 风速 -> 保证功率 来自数据库 **/
  111. List<ProBasicModelPower> modelPowerList = InitialRunner.modelPowerDetailNewMap.get(InitialRunner.wtNewMap.get(obj.getWindturbineId()).getModelId());
  112. Map<Double, Double> modelPowerMap = modelPowerList.stream().collect(Collectors.toMap(ProBasicModelPower::getSpeed, ProBasicModelPower::getEnsurePower));
  113. /** 数据预处理 **/
  114. List<PowerPointData> data = PowerProcessALG.dataProcess(eis, modelPowerMap, vo.getMaxs(), vo.getMins(), vo.getMaxp(), vo.getMinp(), vo.getIsfbw(), vo.getIsfhl(), vo.getIsbw(), vo.getIstj(), vo.getIsglpc(), vo.getIsqfh(), vo.getQfhdj());
  115. /** 静风频率 **/
  116. List<Double> ls = WindDirectionALG.frequency(data.stream().map(PowerPointData::getSpeed).collect(Collectors.toList()), 3);
  117. double frequency = ls.get(0);
  118. double speed = ls.get(1);
  119. String content = processAssemble(data);
  120. String fileName = config.getFilePathProcess() + vo.getStation() + "_" + obj.getWindturbineId() + "_" + SnowFlakeUtil.generateIdL() / 100000 + ".csv";
  121. boolean flag = FileUtil.writeFile(fileName, content);
  122. if (flag) { // TODO 保存数据库
  123. obj.setId(null);
  124. obj.setPath(fileName);
  125. obj.setFrequency(frequency);
  126. obj.setSpeedavg(speed);
  127. obj.setType(Constants.DATA_PROCESS);
  128. proEconPowerFittingAnalySisService.saveOrUpdate(obj);
  129. processMap.put(obj.getId(),fileName);//保存预处理的的数据
  130. }
  131. System.out.println("功率曲线拟合数据预处理完成:" + obj.getWindturbineId());
  132. }
  133. } catch (Exception e) {
  134. e.printStackTrace();
  135. }
  136. //3.数据拟合
  137. AtomicReference<ProEconPowerFittingAnalySis> object = new AtomicReference<>();
  138. if (vo.getMode() == 0){ //单台拟合
  139. for (String processkey : processMap.keySet()){
  140. List<ProEconPowerFittingAnalySis> list = proEconPowerFittingAnalySisService.selectListByIds(processkey);
  141. List<Double> arraySpeed = new ArrayList<>();
  142. List<Double> arrayPower = new ArrayList<>();
  143. List<String> line = FileUtil.readFile(processMap.get(processkey), true);
  144. csvParse(line, arraySpeed, arrayPower, vo.getMins(), vo.getMaxs(), vo.getMinp(), vo.getMaxp());
  145. List<ProBasicModelPower> mp = InitialRunner.modelPowerDetailNewMap.get(InitialRunner.wtNewMap.get(list.get(0).getWindturbineId()).getModelId());
  146. Double maxP = mp.stream().map(ProBasicModelPower::getEnsurePower).max(Comparator.comparing(Double::doubleValue)).get();
  147. object.set(fittingMode(list, maxP, arraySpeed, arrayPower, vo.getDimension(), vo.getMode()));
  148. }
  149. }
  150. if (vo.getMode() == 1){ //合并拟合
  151. AtomicReference<Double> maxP = new AtomicReference<>(0.0);
  152. List<Double> arraySpeed = new ArrayList<>();
  153. List<Double> arrayPower = new ArrayList<>();
  154. for (String processkey : processMap.keySet()){
  155. List<String> line = FileUtil.readFile(processMap.get(processkey), true);
  156. csvParse(line, arraySpeed, arrayPower, vo.getMins(), vo.getMaxs(), vo.getMinp(), vo.getMaxp());
  157. List<ProBasicModelPower> mp = InitialRunner.modelPowerDetailNewMap.get(InitialRunner.wtNewMap.get(processkey).getModelId());
  158. Double maxPower = mp.stream().map(ProBasicModelPower::getEnsurePower).max(Comparator.comparing(Double::doubleValue)).get();
  159. if (maxPower > maxP.get()) maxP.set(maxPower);
  160. }
  161. // object.set(fittingMode(list, maxP.get(), arraySpeed, arrayPower, dimension, mode));
  162. }
  163. if (vo.getMode() == 2){ //同名拟合(暂时不支持)
  164. //// List<ProEconPowerFittingAnalySis> list = powerService.selectListByIds(ids);
  165. // Map<String, List<ProEconPowerFittingAnalySis>> map = list.stream().collect(Collectors.groupingBy(d -> d.getWindturbine()));
  166. // map.forEach((k, ls) -> {
  167. // if (ls.size() > 1){
  168. // double maxP = 0;
  169. // List<ProBasicModelPower> mp = null;
  170. // List<Double> arraySpeed = new ArrayList<>();
  171. // List<Double> arrayPower = new ArrayList<>();
  172. // for (ProEconPowerFittingAnalySis obj : ls){
  173. // List<String> line = FileUtil.readFile(obj.getPath(), true);
  174. // csvParse(line, arraySpeed, arrayPower, mins, maxs, minp, maxp);
  175. // mp = InitialRunner.modelPowerDetailMap.get(InitialRunner.wtMap.get(obj.getWindturbine()).getModelid());
  176. // maxP = mp.stream().map(ProBasicModelPower::getEnsurepower).max(Comparator.comparing(Double::doubleValue)).get();
  177. // }
  178. // object.set(fittingMode(ls, maxP, arraySpeed, arrayPower, dimension, mode));
  179. // }else {
  180. // for (ProEconPowerFittingAnalySis obj : ls) {
  181. // List<ProEconPowerFittingAnalySis> collect = new ArrayList<>();
  182. // collect.add(obj);
  183. // List<Double> arraySpeed = new ArrayList<>();
  184. // List<Double> arrayPower = new ArrayList<>();
  185. // List<String> line = FileUtil.readFile(collect.get(0).getPath(), true);
  186. // csvParse(line, arraySpeed, arrayPower, mins, maxs, minp, maxp);
  187. // List<ProBasicModelPower> mp = InitialRunner.modelPowerDetailMap.get(InitialRunner.wtMap.get(list.get(0).getWindturbine()).getModelid());
  188. // Double maxP = mp.stream().map(ProBasicModelPower::getEnsurepower).max(Comparator.comparing(Double::doubleValue)).get();
  189. // object.set(fittingMode(collect, maxP, arraySpeed, arrayPower, dimension, mode));
  190. // }
  191. // }
  192. // });
  193. }
  194. fittingMap.put(object.get().getId(),object.get().getPath());
  195. return object.get();
  196. }
  197. /**
  198. * 曲线,散点等数据
  199. * 风速 eg:[1,2,3,4。。。。]
  200. * 曲线 eg:[1,2,3,4。。。。]
  201. * 散点 eg:[[1,2],[3,2],[3,5]。。。。。]
  202. * @param id
  203. * @return
  204. */
  205. public Map<String, Object> dataFittingCurve(String id){
  206. Map<String, Object> map = new HashMap<>();
  207. ProEconPowerFittingAnalySis obj = proEconPowerFittingAnalySisService.selectItemById(id);
  208. //实际功率、风速、Cp值
  209. List<Object> sjglList = new ArrayList<>();
  210. List<Object> cpzList = new ArrayList<>();
  211. List<String> ls = FileUtil.readFile(obj.getPath(), true);
  212. for (int i = 1; i < ls.size(); i++){
  213. PowerFittingData data = new PowerFittingData(ls.get(i).split(","));
  214. sjglList.add(new double[]{Double.valueOf(data.getSpeed()), data.getNhdata()});
  215. cpzList.add(new double[]{Double.valueOf(data.getSpeed()), data.getCpdata()});
  216. }
  217. //保证功率
  218. List<ProBasicModelPower> modelPower = InitialRunner.modelPowerDetailNewMap.get(InitialRunner.wtNewMap.get(obj.getWindturbineId()).getModelId());
  219. List<Object> bzglList = modelPower.stream().sorted(Comparator.comparing(ProBasicModelPower::getSpeed)).map(m -> new double[]{m.getSpeed(), m.getEnsurePower()}).collect(Collectors.toList());
  220. //散点
  221. String[] ids = obj.getProcessid().split(",");
  222. List<PowerPointData> yyd = new ArrayList<>(); //有用点
  223. List<PowerPointData> wyd = new ArrayList<>(); //无用点
  224. for (String pid : ids){
  225. ProEconPowerFittingAnalySis pf = proEconPowerFittingAnalySisService.selectItemById(pid);
  226. List<String> lp = FileUtil.readFile(pf.getPath(), true);
  227. for (int i = 1; i < lp.size(); i++){
  228. String[] split = lp.get(i).split(",");
  229. PowerPointData pd = new PowerPointData(split, true);
  230. if (pd.getSpeed() < 0 || pd.getPower() < 0)
  231. continue;
  232. pd.setWtId(pf.getWindturbineId());
  233. if (0 == pd.getFilter())
  234. yyd.add(pd); //没有过滤
  235. if (1 == pd.getFilter())
  236. wyd.add(pd); //已过滤
  237. }
  238. }
  239. dataScanService.setMapYY(DBSCANPointALG.dbscan(yyd, 10));
  240. dataScanService.setMapWY(DBSCANPointALG.dbscan(wyd, 10));
  241. List<PointVo> listYY = new ArrayList<>();
  242. List<PointVo> listWY = new ArrayList<>();
  243. dataScanService.getMapYY().forEach((k, v) -> {
  244. // k: 前端画圈时的散点数据标记
  245. listYY.add(new PointVo(v.get(0).getSpeed(), v.get(0).getPower(), dataScanService.getMapYY().get(k).size() + 3, k));
  246. });
  247. dataScanService.getMapWY().forEach((k, v) -> {
  248. // k: 前端画圈时的散点数据标记
  249. listWY.add(new PointVo(v.get(0).getSpeed(), v.get(0).getPower(), dataScanService.getMapWY().get(k).size() + 3, k));
  250. });
  251. map.put("sjgl", sjglList); //实际功率
  252. map.put("llgl", bzglList); //保证功率
  253. map.put("cpz", cpzList); //Cp值
  254. map.put("obj", obj); //对w象
  255. map.put("yyd", listYY); //有用散点
  256. map.put("wyd", listWY); //无用散点
  257. return map;
  258. }
  259. private String prepareAssemble(List<List<TsDoubleData>> list){
  260. if (list.size() == 0)
  261. return null;
  262. StringBuilder sb = setTitle();
  263. List<TsDoubleData> data = list.get(0);
  264. for (int i = 0; i < data.size(); i++){
  265. sb.append(DateUtil.format(data.get(i).getTs(), DateUtil.DATE_TIME_PATTERN)).append(",");
  266. sb.append(data.get(i).getDoubleValue()).append(",");
  267. for (int j = 1; j < list.size(); j++){
  268. sb.append(list.get(j).get(i).getDoubleValue()).append(",");
  269. }
  270. sb.deleteCharAt(sb.lastIndexOf(","));
  271. sb.append("\n");
  272. }
  273. return sb.toString();
  274. }
  275. private String processAssemble(List<PowerPointData> list) {
  276. StringBuilder sb = setTitle();
  277. for (PowerPointData obj : list){
  278. List<FixedVo> ls = AnnotationTool.getValueList(obj);
  279. String data = ls.stream().filter(f -> !StringUtils.isEmpty(f.getRemark())).map(FixedVo::getKey).collect(Collectors.joining(","));
  280. sb.append(data).append("\n");
  281. }
  282. return sb.toString();
  283. }
  284. private StringBuilder setTitle(){
  285. StringBuilder sb = new StringBuilder();
  286. val list = AnnotationTool.getFixedVoList(PowerPointData.class);
  287. String columnName = list.stream().filter(f -> f.getRemark().equals("1")).map(FixedVo::getDes).collect(Collectors.joining(","));
  288. sb.append(columnName).append("\n");
  289. return sb;
  290. }
  291. /** 读取csv数据 转换成对象数组 **/
  292. private void csvParse(List<String> line, List<Double> arrayS, List<Double> arrayP, double mins, double maxs, double minp, double maxp){
  293. for (int i = 1; i < line.size(); i++) {
  294. String[] split = line.get(i).split(",");
  295. PowerPointData data = new PowerPointData(split, true);//是否过滤 0:没过滤 1:过滤
  296. double x = data.getSpeed(); //风速
  297. double y = data.getPower(); //功率
  298. int filter = data.getFilter();
  299. if (filter == 0 && (x >= mins && x <= maxs && y >= minp && y <= maxp)) {
  300. arrayS.add(x);
  301. arrayP.add(y);
  302. }
  303. }
  304. }
  305. private ProEconPowerFittingAnalySis fittingMode(List<ProEconPowerFittingAnalySis> list, Double powerMax, List<Double> arraySpeed, List<Double> arrayPower, Integer dimension, int mode){
  306. if (list == null || list.size() == 0)
  307. return null;
  308. ProEconPowerFittingAnalySis obj = list.get(0);
  309. //风速0-25,数据不全拟合的则不全,需要补一下
  310. arraySpeed.add(0.0);
  311. arraySpeed.add(25.01);
  312. arrayPower.add(0.0);
  313. arrayPower.add(powerMax);
  314. double[] arrX = arraySpeed.stream().sorted().mapToDouble(i->i).toArray();
  315. double[] arrY = arrayPower.stream().sorted().mapToDouble(i->i).toArray();
  316. //功率曲线拟合 不合理数据过滤
  317. List<Point> temp = PowerFittingALG.buildLine(arrX, arrY, arraySpeed.size(), dimension, 0.01);
  318. //推力系数 CP值
  319. LineCurveFitting lf = new LineCurveFitting();
  320. lf.setYLines(temp);
  321. lf = PowerFittingALG.buildCp(InitialRunner.equipmentNewMap.get(InitialRunner.wtNewMap.get(obj.getWindturbineId()).getModelId()).getSweptArea(), lf);
  322. lf.getCpValue().forEach(f -> {if(f.getX() <= 2.5) f.setY(0);});
  323. //曲线偏差率
  324. dataCurveRatio(lf, obj);
  325. String content = fittingAssemble(lf);
  326. String processId = "";
  327. String fileName = null;
  328. if (mode == 0){
  329. processId = obj.getId();
  330. fileName = config.getFilePathFitting() + obj.getStation() + "_" + obj.getCode() + "_" + SnowFlakeUtil.generateIdL() / 100000 + ".csv";
  331. }
  332. if (mode == 1){
  333. processId = list.stream().map(d -> d.getId()).collect(Collectors.joining(","));
  334. fileName = config.getFilePathFitting() + obj.getStation() + "_merge" + "_" + SnowFlakeUtil.generateIdL() / 100000 + ".csv";
  335. }
  336. if (mode == 2){
  337. processId = list.stream().map(d -> d.getId()).collect(Collectors.joining(","));
  338. fileName = config.getFilePathFitting() + obj.getStation() + "_same" + "_" + SnowFlakeUtil.generateIdL() / 100000 + ".csv";
  339. }
  340. boolean flag = FileUtil.writeFile(fileName, content);
  341. if (flag) { // TODO 保存数据库
  342. obj.setId(null);
  343. obj.setPath(fileName);
  344. obj.setProcessid(processId);
  345. obj.setCpavg(lf.getCpAvg());
  346. obj.setType(Constants.DATA_FITTING);
  347. proEconPowerFittingAnalySisService.saveOrUpdate(obj);
  348. }
  349. System.out.println("功率曲线拟合完成:" + obj.getWindturbineId());
  350. return obj;
  351. }
  352. /**
  353. * 曲线偏差率 分段的+全部的
  354. * 3-5 5-10 10-12 12-25
  355. * @return
  356. */
  357. private void dataCurveRatio(LineCurveFitting lf, ProEconPowerFittingAnalySis obj) {
  358. DecimalFormat df = new DecimalFormat("0.00");
  359. try{
  360. //风速、实际功率
  361. List<Point> point = new ArrayList<>(); //3-25m
  362. List<Point> point5 = new ArrayList<>(); //分段
  363. List<Point> point10 = new ArrayList<>(); //分段
  364. List<Point> point12= new ArrayList<>(); //分段
  365. List<Point> point25 = new ArrayList<>(); //分段
  366. List<Point> line = lf.getYLines();
  367. for (int i = 1; i < line.size(); i++){
  368. double speed = Double.valueOf(df.format(line.get(i).getX()));
  369. if (speed >= 3 && speed < 5)
  370. point5.add(new Point(speed, line.get(i).getY()));
  371. if (speed >= 5 && speed < 10)
  372. point10.add(new Point(speed, line.get(i).getY()));
  373. if (speed >= 10 && speed < 12)
  374. point12.add(new Point(speed, line.get(i).getY()));
  375. if (speed >= 12 && speed <= 25)
  376. point25.add(new Point(speed, line.get(i).getY()));
  377. if (speed >= 3 && speed <= 25){
  378. point.add(new Point(speed, line.get(i).getY()));
  379. }
  380. }
  381. //保证功率
  382. List<Point> points = new ArrayList<>(); //3-25m
  383. List<Point> points5 = new ArrayList<>(); //分段
  384. List<Point> points10 = new ArrayList<>(); //分段
  385. List<Point> points12 = new ArrayList<>(); //分段
  386. List<Point> points25 = new ArrayList<>(); //分段
  387. List<ProBasicModelPower> list = InitialRunner.modelPowerDetailNewMap.get(InitialRunner.wtNewMap.get(obj.getWindturbineId()).getModelId());
  388. for (int i = 0; i < list.size(); i++){
  389. ProBasicModelPower power = list.get(i);
  390. if (power.getSpeed() >= 3 && power.getSpeed() < 5)
  391. points5.add(new Point(power.getSpeed(), power.getEnsurePower()));
  392. if (power.getSpeed() >= 5 && power.getSpeed() < 10)
  393. points10.add(new Point(power.getSpeed(), power.getEnsurePower()));
  394. if (power.getSpeed() >= 10 && power.getSpeed() < 12)
  395. points12.add(new Point(power.getSpeed(), power.getEnsurePower()));
  396. if (power.getSpeed() >= 12 && power.getSpeed() <= 25)
  397. points25.add(new Point(power.getSpeed(), power.getEnsurePower()));
  398. if (power.getSpeed() >= 3 && power.getSpeed() <= 25)
  399. points.add(new Point(power.getSpeed(), power.getEnsurePower()));
  400. }
  401. double maxp5 = list.stream().filter(f -> 5.0 == f.getSpeed()).collect(Collectors.toList()).get(0).getEnsurePower();
  402. double maxp10 = list.stream().filter(f -> 10.0 == f.getSpeed()).collect(Collectors.toList()).get(0).getEnsurePower();
  403. double maxp12 = list.stream().filter(f -> 12.0 == f.getSpeed()).collect(Collectors.toList()).get(0).getEnsurePower();
  404. double maxp25 = list.stream().filter(f -> 25.0 == f.getSpeed()).collect(Collectors.toList()).get(0).getEnsurePower();
  405. //曲线偏差率
  406. double pcl = PowerFittingALG.curveDeviationRatio2(point, points, maxp25, 3, 25);
  407. double pcl5 = PowerFittingALG.curveDeviationRatio2(point5, points5, maxp5, 3, 5);
  408. double pcl10 = PowerFittingALG.curveDeviationRatio2(point10, points10, maxp10, 5, 10);
  409. double pcl12 = PowerFittingALG.curveDeviationRatio2(point12, points12, maxp12, 10, 12);
  410. double pcl25 = PowerFittingALG.curveDeviationRatio2(point25, points25, maxp25, 12, 25);
  411. obj.setPcratio(Double.valueOf(df.format(pcl)));
  412. obj.setPc5ratio(Double.valueOf(df.format(pcl5)));
  413. obj.setPc10ratio(Double.valueOf(df.format(pcl10)));
  414. obj.setPc12ratio(Double.valueOf(df.format(pcl12)));
  415. obj.setPc25ratio(Double.valueOf(df.format(pcl25)));
  416. } catch (Exception e){
  417. log.error("DataFittingService--dataCurveRatio",e);
  418. }
  419. }
  420. private String fittingAssemble(LineCurveFitting lf){
  421. StringBuilder sb = setTitle();
  422. for (int i = 0; i < lf.getYLines().size(); i++){
  423. Point cp = lf.getCpValue().get(i);
  424. Point gl = lf.getYLines().get(i);
  425. String stx = String.format("%.2f", gl.getX());
  426. double x = Double.parseDouble(stx);
  427. String sty = String.format("%.2f", gl.getY());
  428. double y = Double.parseDouble(sty);
  429. String stcp = String.format("%.4f", cp.getY());
  430. double z = Double.parseDouble(stcp);
  431. sb.append(x).append(",").append(y).append(",").append(z).append("\n");
  432. }
  433. return sb.toString();
  434. }
  435. }