123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155 |
- package com.gyee.power.fitting.dispersionanalysis;
- import com.alibaba.fastjson.JSONObject;
- import com.gyee.power.fitting.common.alg.PolynomialCurveFitting;
- import com.gyee.power.fitting.common.result.JsonResult;
- import com.gyee.power.fitting.common.result.ResultCode;
- import com.gyee.power.fitting.model.custom.PhotovoltaicInfo;
- import com.gyee.power.fitting.service.impl.IvPvCurveFittingService;
- import org.apache.commons.math3.fitting.WeightedObservedPoints;
- import org.springframework.web.bind.annotation.*;
- import javax.annotation.Resource;
- import java.io.FileWriter;
- import java.io.IOException;
- import java.util.ArrayList;
- import java.util.List;
- import java.util.Map;
- import java.util.Random;
- import java.util.stream.Collectors;
- //逆变器单位装机输出功率离散率分析
- @CrossOrigin
- @RequestMapping("/discreteness")
- @RestController
- public class InverterPowerAnalysis2 {
- @Resource
- private IvPvCurveFittingService curveFittingService;
- @Resource
- private PolynomialCurveFitting pncf;
- // 模拟生成逆变器数据
- private static List<InverterData> generateInverterData() {
- List<InverterData> data = new ArrayList<>();
- Random rand = new Random();
- for (int i = 1; i <= 10; i++) {
- String inverterId = "Inverter" + i;
- long timestamp = System.currentTimeMillis();
- double outputPower = rand.nextDouble() * 1000;
- double lightIntensity = rand.nextDouble() * 1000;
- data.add(new InverterData(inverterId, timestamp, outputPower, lightIntensity));
- }
- return data;
- }
- // 计算平均功率
- private static double calculateAveragePower(List<Double> powerData) {
- double sum = 0.0;
- for (Double power : powerData) {
- sum += power;
- }
- return sum / powerData.size();
- }
- // 根据复杂规则分析逆变器状态
- private static String analyzeInverterStatus(double powerDeviation, double averagePower) {
- if (powerDeviation < 0.1 && averagePower > 800) {
- return "运行稳定";
- } else if (powerDeviation < 0.2 && averagePower > 600) {
- return "运行良好";
- } else if (powerDeviation < 0.3 && averagePower > 400) {
- return "运行水平有待提高";
- } else {
- return "必须整改";
- }
- }
- // 将数据存储到CSV文件
- private static void saveDataToCSV(Map<String, List<Double>> historicalPowerData, String fileName) {
- try {
- FileWriter writer = new FileWriter(fileName);
- writer.append("InverterId,PowerData\n");
- for (Map.Entry<String, List<Double>> entry : historicalPowerData.entrySet()) {
- String inverterId = entry.getKey();
- List<Double> powerData = entry.getValue();
- StringBuilder powerDataStr = new StringBuilder();
- for (Double power : powerData) {
- powerDataStr.append(power).append(",");
- }
- writer.append(inverterId).append(",").append(powerDataStr.toString()).append("\n");
- }
- writer.flush();
- writer.close();
- System.out.println("数据已保存到 " + fileName);
- } catch (IOException e) {
- e.printStackTrace();
- }
- }
- @GetMapping("/rate")
- private JSONObject getFileList(
- @RequestParam(value = "station", required = true) String station,
- @RequestParam(value = "inverters", required = false) List<String> inverters,
- @RequestParam(value = "startdate", required = true) long startdate,
- @RequestParam(value = "interval", required = false) Integer interval,
- @RequestParam(value = "enddate", required = true) long enddate) {
- Map<String, List<PhotovoltaicInfo>> datasInfos = curveFittingService.getDatas2File1(station, startdate, enddate, interval);
- /*List<PhotovoltaicInfo> infos = new ArrayList<>();
- //单台拟合
- if (inverters.size() == 1) {
- infos = datasInfos.get(inverters.get(0));
- //多台拟合
- } else if (inverters.size() > 1) {
- infos = inverters.stream().flatMap(inverter -> datasInfos.get(inverter).stream()).collect(Collectors.toList());
- //全场拟合
- } else {
- infos = datasInfos.values().stream().flatMap(List::stream).collect(Collectors.toList());
- }*/
- List<InverterData2> inverterData2s = new ArrayList<>();
- datasInfos.forEach((k, v) -> {
- WeightedObservedPoints points = new WeightedObservedPoints();
- for (PhotovoltaicInfo info : v) {
- if (info.getS() < 1) {
- points.add(0, 0);
- }
- points.add(info.getS(), info.getActualP());
- }
- double[] run = pncf.run(points);
- inverterData2s.add(analyzeInverterPerformance(v, run, k));
- });
- return JsonResult.successData(ResultCode.SUCCESS, inverterData2s);
- }
- // 分析逆变器性能,包括计算离散率和平均功率
- private InverterData2 analyzeInverterPerformance(List<PhotovoltaicInfo> infos, double[] run, String inverterId) {
- List<Double> collect = infos.stream().map(info -> info.getS()).collect(Collectors.toList());
- // 计算功率离散率
- double powerDeviation = calculatePowerDeviation(collect, run);
- // 计算平均功率
- double averagePower = calculateAveragePower(collect);
- // 分析逆变器状态
- String inverterStatus = analyzeInverterStatus(powerDeviation, averagePower);
- return new InverterData2(inverterId, powerDeviation, averagePower, inverterStatus, "离散率");
- }
- // 计算功率离散率
- private double calculatePowerDeviation(List<Double> powerData, double[] run) {
- double sum = 0.0;
- // 计算标准差
- for (Double power : powerData) {
- sum += Math.pow(power - pncf.calcPoly(power, run), 2);
- }
- return Math.sqrt(sum / powerData.size());
- }
- }
|