|
@@ -1,25 +1,35 @@
|
|
|
package com.gyee.power.fitting.service.custom.curve;
|
|
|
|
|
|
|
|
|
+import com.gyee.power.fitting.common.alg.DBSCANPointALG;
|
|
|
+import com.gyee.power.fitting.common.alg.PowerFittingALG;
|
|
|
+import com.gyee.power.fitting.common.alg.PowerProcessALG;
|
|
|
+import com.gyee.power.fitting.common.alg.WindDirectionALG;
|
|
|
import com.gyee.power.fitting.common.config.GyeeConfig;
|
|
|
+import com.gyee.power.fitting.common.constants.Constants;
|
|
|
import com.gyee.power.fitting.common.feign.RemoteServiceBuilder;
|
|
|
import com.gyee.power.fitting.common.spring.InitialRunner;
|
|
|
import com.gyee.power.fitting.common.util.DateUtil;
|
|
|
import com.gyee.power.fitting.common.util.FileUtil;
|
|
|
-import com.gyee.power.fitting.model.Powerfittinganalysis;
|
|
|
-import com.gyee.power.fitting.model.ProBasicEquipmentPoint;
|
|
|
+import com.gyee.power.fitting.common.util.NumberUtil;
|
|
|
+import com.gyee.power.fitting.common.util.SnowFlakeUtil;
|
|
|
+import com.gyee.power.fitting.model.*;
|
|
|
+import com.gyee.power.fitting.model.ProBasicModelPower;
|
|
|
import com.gyee.power.fitting.model.anno.AnnotationTool;
|
|
|
import com.gyee.power.fitting.model.anno.FixedVo;
|
|
|
-import com.gyee.power.fitting.model.custom.NewDataFittingVo;
|
|
|
-import com.gyee.power.fitting.model.custom.PowerPointData;
|
|
|
-import com.gyee.power.fitting.model.custom.TsDoubleData;
|
|
|
+import com.gyee.power.fitting.model.custom.*;
|
|
|
+import com.gyee.power.fitting.service.ProEconPowerFittingAnalySisService;
|
|
|
import lombok.extern.slf4j.Slf4j;
|
|
|
import lombok.val;
|
|
|
+import org.apache.commons.lang3.StringUtils;
|
|
|
import org.springframework.beans.factory.annotation.Autowired;
|
|
|
import org.springframework.stereotype.Service;
|
|
|
|
|
|
+import javax.annotation.Resource;
|
|
|
+import java.text.DecimalFormat;
|
|
|
import java.util.*;
|
|
|
import java.util.concurrent.TimeUnit;
|
|
|
+import java.util.concurrent.atomic.AtomicReference;
|
|
|
import java.util.stream.Collectors;
|
|
|
|
|
|
@Slf4j
|
|
@@ -31,19 +41,28 @@ public class NewDataFittingService {
|
|
|
@Autowired
|
|
|
private RemoteServiceBuilder remoteService;
|
|
|
|
|
|
+ @Autowired
|
|
|
+ private ProEconPowerFittingAnalySisService proEconPowerFittingAnalySisService;
|
|
|
|
|
|
+ @Resource
|
|
|
+ private DataScanService dataScanService;
|
|
|
|
|
|
|
|
|
+ //数据map
|
|
|
+ private Map<String, String> prepareMap = null;//数据准备map
|
|
|
+ private Map<String, String> processMap = null;//数据处理map
|
|
|
+ private Map<String, String> fittingMap = null;//数据拟合map
|
|
|
|
|
|
+ /**
|
|
|
+ * 数据准备拟合
|
|
|
+ * @param vo
|
|
|
+ * @return
|
|
|
+ */
|
|
|
+ public ProEconPowerFittingAnalySis newDataFitting(NewDataFittingVo vo) {
|
|
|
|
|
|
- public Powerfittinganalysis newDataFitting(NewDataFittingVo vo) {
|
|
|
-
|
|
|
- Map<String,String> prepareMap = new HashMap<>();
|
|
|
-
|
|
|
- Map<String,String> processMap = new HashMap<>();
|
|
|
-
|
|
|
- Map<String,String> fittingMap = new HashMap<>();
|
|
|
-
|
|
|
+ prepareMap = new HashMap<>();
|
|
|
+ processMap = new HashMap<>();
|
|
|
+ fittingMap = new HashMap<>();
|
|
|
|
|
|
//1.数据获取
|
|
|
List<String> wtIds = Arrays.asList(vo.getWtIds().split(","));
|
|
@@ -59,7 +78,7 @@ public class NewDataFittingService {
|
|
|
for (int i = 0; i < points.size(); i++) {
|
|
|
ProBasicEquipmentPoint point = collect.get(points.get(i)).get(0);
|
|
|
log.info("测点:" + point.getId() + "----" + point.getName());
|
|
|
- List<TsDoubleData> data = remoteService.adapter().getHistorySnap(point.getId(), vo.getSt(), vo.getEt(), vo.getInterval());
|
|
|
+ List<TsDoubleData> data = remoteService.adapter().getHistorySnap(point.getNemCode(), vo.getSt(), vo.getEt(), vo.getInterval());
|
|
|
if (data == null || data.size() < 0)
|
|
|
break;
|
|
|
result.add(data);
|
|
@@ -68,12 +87,26 @@ public class NewDataFittingService {
|
|
|
if (result.size() != points.size())
|
|
|
continue;
|
|
|
|
|
|
- String content = assemble(result);
|
|
|
+ String content = prepareAssemble(result);
|
|
|
// 处理的数据保存在本地
|
|
|
- String wtCode = InitialRunner.wtNewMap.get(wt).getNemCode();
|
|
|
+ String wtCode = InitialRunner.wtNewMap.get(wt).getId();
|
|
|
String fileName = config.getFilePathPrepare() + vo.getStation() + "_" + wtCode + "_" + System.currentTimeMillis() / 1000 + ".csv";
|
|
|
boolean flag = FileUtil.writeFile(fileName, content);
|
|
|
- prepareMap.put(fileName,content);//保存拿到的数据
|
|
|
+
|
|
|
+ if (flag){ // TODO 保存数据库
|
|
|
+ ProEconPowerFittingAnalySis obj = new ProEconPowerFittingAnalySis();
|
|
|
+ obj.setStation(vo.getStation());
|
|
|
+ obj.setStationcn(InitialRunner.stationNewMap.get(vo.getStation()));
|
|
|
+ obj.setWindturbineId(wt);
|
|
|
+ obj.setCode(wtCode);
|
|
|
+ obj.setTime(DateUtil.format(vo.getSt(), DateUtil.YYYY_MM_DD_CHN) + "-" + DateUtil.format(vo.getEt(), DateUtil.YYYY_MM_DD_CHN));
|
|
|
+ obj.setInterval(NumberUtil.toNum(vo.getInterval()));
|
|
|
+ obj.setPath(fileName);
|
|
|
+ obj.setType(Constants.DATA_PREPARE);
|
|
|
+ obj.setInterp(vo.getInterval());
|
|
|
+ proEconPowerFittingAnalySisService.saveOrUpdate(obj);
|
|
|
+ prepareMap.put(obj.getId(),fileName);//保存拿到的数据
|
|
|
+ }
|
|
|
|
|
|
System.out.println("数据准备完成:" + wt);
|
|
|
|
|
@@ -85,46 +118,192 @@ public class NewDataFittingService {
|
|
|
|
|
|
//2.数据筛选
|
|
|
|
|
|
-// for (String key : prepareMap.keySet()){
|
|
|
-//
|
|
|
-//
|
|
|
-// /** 读取csv数据 转换成对象数组 **/
|
|
|
-// List<PowerPointData> eis = new ArrayList<>();
|
|
|
-// List<String> list = FileUtil.readFile(obj.getPath(), true);
|
|
|
-// for (int i = 1; i < list.size(); i++) {
|
|
|
-// eis.add(new PowerPointData(list.get(i).split(","), false));
|
|
|
-// }
|
|
|
-//
|
|
|
-// /** 风速 -> 保证功率 来自数据库 **/
|
|
|
-// List<Modelpowerdetails> modelPowerList = InitialRunner.modelPowerDetailMap.get(InitialRunner.wtMap.get(obj.getWindturbine()).getModelid());
|
|
|
-// Map<Double, Double> modelPowerMap = modelPowerList.stream().collect(Collectors.toMap(Modelpowerdetails::getSpeed, Modelpowerdetails::getEnsurepower));
|
|
|
-// /** 数据预处理 **/
|
|
|
-// List<PowerPointData> data = PowerProcessALG.dataProcess(eis, modelPowerMap, maxs, mins, maxp, minp, isfbw, isfhl, isbw, istj, isglpc, isqfh, qfhdj);
|
|
|
-// /** 静风频率 **/
|
|
|
-// List<Double> ls = WindDirectionALG.frequency(data.stream().map(PowerPointData::getSpeed).collect(Collectors.toList()), 3);
|
|
|
-// double frequency = ls.get(0);
|
|
|
-// double speed = ls.get(1);
|
|
|
-//
|
|
|
-// String content = assemble(data);
|
|
|
-// String fileName = config.getFilePathProcess() + obj.getStation() + "_" + obj.getCode() + "_" + SnowFlakeUtil.generateIdL() / 100000 + ".csv";
|
|
|
-// boolean flag = FileUtil.writeFile(fileName, content);
|
|
|
-// if (flag) { // TODO 保存数据库
|
|
|
-// obj.setPath(fileName);
|
|
|
-// obj.setFrequency(frequency);
|
|
|
-// obj.setSpeedavg(speed);
|
|
|
-// obj.setType(Constants.DATA_PROCESS);
|
|
|
-// powerService.insertItem(obj);
|
|
|
-// }
|
|
|
-// System.out.println("功率曲线拟合数据预处理完成:" + obj.getWindturbine());
|
|
|
-// }
|
|
|
+ try {
|
|
|
+ for (String key : prepareMap.keySet()){
|
|
|
+
|
|
|
+ ProEconPowerFittingAnalySis obj = proEconPowerFittingAnalySisService.getById(key);
|
|
|
+ /** 读取csv数据 转换成对象数组 **/
|
|
|
+ List<PowerPointData> eis = new ArrayList<>();
|
|
|
+ List<String> list = FileUtil.readFile(prepareMap.get(key), true);
|
|
|
+ for (int i = 1; i < list.size(); i++) {
|
|
|
+ eis.add(new PowerPointData(list.get(i).split(","), false));
|
|
|
+ }
|
|
|
+
|
|
|
+ /** 风速 -> 保证功率 来自数据库 **/
|
|
|
+ List<ProBasicModelPower> modelPowerList = InitialRunner.modelPowerDetailNewMap.get(InitialRunner.wtNewMap.get(obj.getWindturbineId()).getModelId());
|
|
|
+ Map<Double, Double> modelPowerMap = modelPowerList.stream().collect(Collectors.toMap(ProBasicModelPower::getSpeed, ProBasicModelPower::getEnsurePower));
|
|
|
+ /** 数据预处理 **/
|
|
|
+ List<PowerPointData> data = PowerProcessALG.dataProcess(eis, modelPowerMap, vo.getMaxs(), vo.getMins(), vo.getMaxp(), vo.getMinp(), vo.getIsfbw(), vo.getIsfhl(), vo.getIsbw(), vo.getIstj(), vo.getIsglpc(), vo.getIsqfh(), vo.getQfhdj());
|
|
|
+ /** 静风频率 **/
|
|
|
+ List<Double> ls = WindDirectionALG.frequency(data.stream().map(PowerPointData::getSpeed).collect(Collectors.toList()), 3);
|
|
|
+ double frequency = ls.get(0);
|
|
|
+ double speed = ls.get(1);
|
|
|
+
|
|
|
+ String content = processAssemble(data);
|
|
|
+ String fileName = config.getFilePathProcess() + vo.getStation() + "_" + obj.getWindturbineId() + "_" + SnowFlakeUtil.generateIdL() / 100000 + ".csv";
|
|
|
+ boolean flag = FileUtil.writeFile(fileName, content);
|
|
|
+
|
|
|
+ if (flag) { // TODO 保存数据库
|
|
|
+ obj.setPath(fileName);
|
|
|
+ obj.setFrequency(frequency);
|
|
|
+ obj.setSpeedavg(speed);
|
|
|
+ obj.setType(Constants.DATA_PROCESS);
|
|
|
+ proEconPowerFittingAnalySisService.saveOrUpdate(obj);
|
|
|
+ processMap.put(obj.getId(),fileName);//保存预处理的的数据
|
|
|
+ }
|
|
|
+
|
|
|
+ System.out.println("功率曲线拟合数据预处理完成:" + obj.getWindturbineId());
|
|
|
+ }
|
|
|
+ } catch (Exception e) {
|
|
|
+ e.printStackTrace();
|
|
|
+ }
|
|
|
//3.数据拟合
|
|
|
|
|
|
- return null;
|
|
|
+ AtomicReference<ProEconPowerFittingAnalySis> object = new AtomicReference<>();
|
|
|
+
|
|
|
+ if (vo.getMode() == 0){ //单台拟合
|
|
|
+ for (String processkey : processMap.keySet()){
|
|
|
+ List<ProEconPowerFittingAnalySis> list = proEconPowerFittingAnalySisService.selectListByIds(processkey);
|
|
|
+ List<Double> arraySpeed = new ArrayList<>();
|
|
|
+ List<Double> arrayPower = new ArrayList<>();
|
|
|
+ List<String> line = FileUtil.readFile(processMap.get(processkey), true);
|
|
|
+ csvParse(line, arraySpeed, arrayPower, vo.getMins(), vo.getMaxs(), vo.getMinp(), vo.getMaxp());
|
|
|
+ List<ProBasicModelPower> mp = InitialRunner.modelPowerDetailNewMap.get(InitialRunner.wtNewMap.get(processkey).getModelId());
|
|
|
+ Double maxP = mp.stream().map(ProBasicModelPower::getEnsurePower).max(Comparator.comparing(Double::doubleValue)).get();
|
|
|
+ object.set(fittingMode(list, maxP, arraySpeed, arrayPower, vo.getDimension(), vo.getMode()));
|
|
|
+
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (vo.getMode() == 1){ //合并拟合
|
|
|
+
|
|
|
+ AtomicReference<Double> maxP = new AtomicReference<>(0.0);
|
|
|
+ List<Double> arraySpeed = new ArrayList<>();
|
|
|
+ List<Double> arrayPower = new ArrayList<>();
|
|
|
+ for (String processkey : processMap.keySet()){
|
|
|
+ List<String> line = FileUtil.readFile(processMap.get(processkey), true);
|
|
|
+ csvParse(line, arraySpeed, arrayPower, vo.getMins(), vo.getMaxs(), vo.getMinp(), vo.getMaxp());
|
|
|
+ List<ProBasicModelPower> mp = InitialRunner.modelPowerDetailNewMap.get(InitialRunner.wtNewMap.get(processkey).getModelId());
|
|
|
+ Double maxPower = mp.stream().map(ProBasicModelPower::getEnsurePower).max(Comparator.comparing(Double::doubleValue)).get();
|
|
|
+ if (maxPower > maxP.get()) maxP.set(maxPower);
|
|
|
+ }
|
|
|
+// object.set(fittingMode(list, maxP.get(), arraySpeed, arrayPower, dimension, mode));
|
|
|
+ }
|
|
|
+ if (vo.getMode() == 2){ //同名拟合(暂时不支持)
|
|
|
+//// List<ProEconPowerFittingAnalySis> list = powerService.selectListByIds(ids);
|
|
|
+// Map<String, List<ProEconPowerFittingAnalySis>> map = list.stream().collect(Collectors.groupingBy(d -> d.getWindturbine()));
|
|
|
+// map.forEach((k, ls) -> {
|
|
|
+// if (ls.size() > 1){
|
|
|
+// double maxP = 0;
|
|
|
+// List<ProBasicModelPower> mp = null;
|
|
|
+// List<Double> arraySpeed = new ArrayList<>();
|
|
|
+// List<Double> arrayPower = new ArrayList<>();
|
|
|
+// for (ProEconPowerFittingAnalySis obj : ls){
|
|
|
+// List<String> line = FileUtil.readFile(obj.getPath(), true);
|
|
|
+// csvParse(line, arraySpeed, arrayPower, mins, maxs, minp, maxp);
|
|
|
+// mp = InitialRunner.modelPowerDetailMap.get(InitialRunner.wtMap.get(obj.getWindturbine()).getModelid());
|
|
|
+// maxP = mp.stream().map(ProBasicModelPower::getEnsurepower).max(Comparator.comparing(Double::doubleValue)).get();
|
|
|
+// }
|
|
|
+// object.set(fittingMode(ls, maxP, arraySpeed, arrayPower, dimension, mode));
|
|
|
+// }else {
|
|
|
+// for (ProEconPowerFittingAnalySis obj : ls) {
|
|
|
+// List<ProEconPowerFittingAnalySis> collect = new ArrayList<>();
|
|
|
+// collect.add(obj);
|
|
|
+// List<Double> arraySpeed = new ArrayList<>();
|
|
|
+// List<Double> arrayPower = new ArrayList<>();
|
|
|
+// List<String> line = FileUtil.readFile(collect.get(0).getPath(), true);
|
|
|
+// csvParse(line, arraySpeed, arrayPower, mins, maxs, minp, maxp);
|
|
|
+// List<ProBasicModelPower> mp = InitialRunner.modelPowerDetailMap.get(InitialRunner.wtMap.get(list.get(0).getWindturbine()).getModelid());
|
|
|
+// Double maxP = mp.stream().map(ProBasicModelPower::getEnsurepower).max(Comparator.comparing(Double::doubleValue)).get();
|
|
|
+// object.set(fittingMode(collect, maxP, arraySpeed, arrayPower, dimension, mode));
|
|
|
+// }
|
|
|
+// }
|
|
|
+// });
|
|
|
+ }
|
|
|
+
|
|
|
+ fittingMap.put(object.get().getId(),object.get().getPath());
|
|
|
+
|
|
|
+
|
|
|
+ return object.get();
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
- private String assemble(List<List<TsDoubleData>> list){
|
|
|
+
|
|
|
+
|
|
|
+ /**
|
|
|
+ * 曲线,散点等数据
|
|
|
+ * 风速 eg:[1,2,3,4。。。。]
|
|
|
+ * 曲线 eg:[1,2,3,4。。。。]
|
|
|
+ * 散点 eg:[[1,2],[3,2],[3,5]。。。。。]
|
|
|
+ * @param id
|
|
|
+ * @return
|
|
|
+ */
|
|
|
+ public Map<String, Object> dataFittingCurve(String id){
|
|
|
+
|
|
|
+ Map<String, Object> map = new HashMap<>();
|
|
|
+ ProEconPowerFittingAnalySis obj = proEconPowerFittingAnalySisService.selectItemById(id);
|
|
|
+
|
|
|
+ //实际功率、风速、Cp值
|
|
|
+ List<Object> sjglList = new ArrayList<>();
|
|
|
+ List<Object> cpzList = new ArrayList<>();
|
|
|
+ List<String> ls = FileUtil.readFile(obj.getPath(), true);
|
|
|
+ for (int i = 1; i < ls.size(); i++){
|
|
|
+ PowerFittingData data = new PowerFittingData(ls.get(i).split(","));
|
|
|
+ sjglList.add(new double[]{Double.valueOf(data.getSpeed()), data.getNhdata()});
|
|
|
+ cpzList.add(new double[]{Double.valueOf(data.getSpeed()), data.getCpdata()});
|
|
|
+ }
|
|
|
+
|
|
|
+ //保证功率
|
|
|
+ List<ProBasicModelPower> modelPower = InitialRunner.modelPowerDetailNewMap.get(InitialRunner.wtNewMap.get(obj.getWindturbineId()).getModelId());
|
|
|
+ List<Object> bzglList = modelPower.stream().sorted(Comparator.comparing(ProBasicModelPower::getSpeed)).map(m -> new double[]{m.getSpeed(), m.getEnsurePower()}).collect(Collectors.toList());
|
|
|
+
|
|
|
+ //散点
|
|
|
+ String[] ids = obj.getProcessid().split(",");
|
|
|
+ List<PowerPointData> yyd = new ArrayList<>(); //有用点
|
|
|
+ List<PowerPointData> wyd = new ArrayList<>(); //无用点
|
|
|
+ for (String pid : ids){
|
|
|
+ ProEconPowerFittingAnalySis pf = proEconPowerFittingAnalySisService.selectItemById(pid);
|
|
|
+ List<String> lp = FileUtil.readFile(pf.getPath(), true);
|
|
|
+ for (int i = 1; i < lp.size(); i++){
|
|
|
+ String[] split = lp.get(i).split(",");
|
|
|
+ PowerPointData pd = new PowerPointData(split, true);
|
|
|
+ if (pd.getSpeed() < 0 || pd.getPower() < 0)
|
|
|
+ continue;
|
|
|
+ pd.setWtId(pf.getWindturbineId());
|
|
|
+ if (0 == pd.getFilter())
|
|
|
+ yyd.add(pd); //没有过滤
|
|
|
+ if (1 == pd.getFilter())
|
|
|
+ wyd.add(pd); //已过滤
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ dataScanService.setMapYY(DBSCANPointALG.dbscan(yyd, 10));
|
|
|
+ dataScanService.setMapWY(DBSCANPointALG.dbscan(wyd, 10));
|
|
|
+
|
|
|
+ List<PointVo> listYY = new ArrayList<>();
|
|
|
+ List<PointVo> listWY = new ArrayList<>();
|
|
|
+ dataScanService.getMapYY().forEach((k, v) -> {
|
|
|
+ // k: 前端画圈时的散点数据标记
|
|
|
+ listYY.add(new PointVo(v.get(0).getSpeed(), v.get(0).getPower(), dataScanService.getMapYY().get(k).size() + 3, k));
|
|
|
+ });
|
|
|
+ dataScanService.getMapWY().forEach((k, v) -> {
|
|
|
+ // k: 前端画圈时的散点数据标记
|
|
|
+ listWY.add(new PointVo(v.get(0).getSpeed(), v.get(0).getPower(), dataScanService.getMapWY().get(k).size() + 3, k));
|
|
|
+ });
|
|
|
+
|
|
|
+ map.put("sjgl", sjglList); //实际功率
|
|
|
+ map.put("llgl", bzglList); //保证功率
|
|
|
+ map.put("cpz", cpzList); //Cp值
|
|
|
+ map.put("obj", obj); //对象
|
|
|
+ map.put("yyd", listYY); //有用散点
|
|
|
+ map.put("wyd", listWY); //无用散点
|
|
|
+
|
|
|
+ return map;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ private String prepareAssemble(List<List<TsDoubleData>> list){
|
|
|
if (list.size() == 0)
|
|
|
return null;
|
|
|
|
|
@@ -143,6 +322,21 @@ public class NewDataFittingService {
|
|
|
return sb.toString();
|
|
|
}
|
|
|
|
|
|
+
|
|
|
+
|
|
|
+ private String processAssemble(List<PowerPointData> list) {
|
|
|
+ StringBuilder sb = setTitle();
|
|
|
+ for (PowerPointData obj : list){
|
|
|
+ List<FixedVo> ls = AnnotationTool.getValueList(obj);
|
|
|
+ String data = ls.stream().filter(f -> !StringUtils.isEmpty(f.getRemark())).map(FixedVo::getKey).collect(Collectors.joining(","));
|
|
|
+ sb.append(data).append("\n");
|
|
|
+ }
|
|
|
+
|
|
|
+ return sb.toString();
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
private StringBuilder setTitle(){
|
|
|
StringBuilder sb = new StringBuilder();
|
|
|
val list = AnnotationTool.getFixedVoList(PowerPointData.class);
|
|
@@ -150,5 +344,168 @@ public class NewDataFittingService {
|
|
|
sb.append(columnName).append("\n");
|
|
|
return sb;
|
|
|
}
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ /** 读取csv数据 转换成对象数组 **/
|
|
|
+ private void csvParse(List<String> line, List<Double> arrayS, List<Double> arrayP, double mins, double maxs, double minp, double maxp){
|
|
|
+ for (int i = 1; i < line.size(); i++) {
|
|
|
+ String[] split = line.get(i).split(",");
|
|
|
+ PowerPointData data = new PowerPointData(split, true);//是否过滤 0:没过滤 1:过滤
|
|
|
+ double x = data.getSpeed(); //风速
|
|
|
+ double y = data.getPower(); //功率
|
|
|
+ int filter = data.getFilter();
|
|
|
+ if (filter == 0 && (x >= mins && x <= maxs && y >= minp && y <= maxp)) {
|
|
|
+ arrayS.add(x);
|
|
|
+ arrayP.add(y);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ private ProEconPowerFittingAnalySis fittingMode(List<ProEconPowerFittingAnalySis> list, Double powerMax, List<Double> arraySpeed, List<Double> arrayPower, Integer dimension, int mode){
|
|
|
+ if (list == null || list.size() == 0)
|
|
|
+ return null;
|
|
|
+
|
|
|
+ ProEconPowerFittingAnalySis obj = list.get(0);
|
|
|
+ //风速0-25,数据不全拟合的则不全,需要补一下
|
|
|
+ arraySpeed.add(0.0);
|
|
|
+ arraySpeed.add(25.01);
|
|
|
+ arrayPower.add(0.0);
|
|
|
+ arrayPower.add(powerMax);
|
|
|
+ double[] arrX = arraySpeed.stream().sorted().mapToDouble(i->i).toArray();
|
|
|
+ double[] arrY = arrayPower.stream().sorted().mapToDouble(i->i).toArray();
|
|
|
+
|
|
|
+ //功率曲线拟合 不合理数据过滤
|
|
|
+ List<Point> temp = PowerFittingALG.buildLine(arrX, arrY, arraySpeed.size(), dimension, 0.01);
|
|
|
+ //推力系数 CP值
|
|
|
+ LineCurveFitting lf = new LineCurveFitting();
|
|
|
+ lf.setYLines(temp);
|
|
|
+ lf = PowerFittingALG.buildCp(InitialRunner.equipmentNewMap.get(InitialRunner.wtNewMap.get(obj.getWindturbineId()).getModelId()).getSweptArea(), lf);
|
|
|
+ lf.getCpValue().forEach(f -> {if(f.getX() <= 2.5) f.setY(0);});
|
|
|
+ //曲线偏差率
|
|
|
+ dataCurveRatio(lf, obj);
|
|
|
+
|
|
|
+ String content = fittingAssemble(lf);
|
|
|
+ String processId = "";
|
|
|
+ String fileName = null;
|
|
|
+ if (mode == 0){
|
|
|
+ processId = obj.getId();
|
|
|
+ fileName = config.getFilePathFitting() + obj.getStation() + "_" + obj.getCode() + "_" + SnowFlakeUtil.generateIdL() / 100000 + ".csv";
|
|
|
+ }
|
|
|
+ if (mode == 1){
|
|
|
+ processId = list.stream().map(d -> d.getId()).collect(Collectors.joining(","));
|
|
|
+ fileName = config.getFilePathFitting() + obj.getStation() + "_merge" + "_" + SnowFlakeUtil.generateIdL() / 100000 + ".csv";
|
|
|
+ }
|
|
|
+ if (mode == 2){
|
|
|
+ processId = list.stream().map(d -> d.getId()).collect(Collectors.joining(","));
|
|
|
+ fileName = config.getFilePathFitting() + obj.getStation() + "_same" + "_" + SnowFlakeUtil.generateIdL() / 100000 + ".csv";
|
|
|
+ }
|
|
|
+ boolean flag = FileUtil.writeFile(fileName, content);
|
|
|
+ if (flag) { // TODO 保存数据库
|
|
|
+ obj.setPath(fileName);
|
|
|
+ obj.setProcessid(processId);
|
|
|
+ obj.setCpavg(lf.getCpAvg());
|
|
|
+ obj.setType(Constants.DATA_FITTING);
|
|
|
+ proEconPowerFittingAnalySisService.saveOrUpdate(obj);
|
|
|
+ }
|
|
|
+ System.out.println("功率曲线拟合完成:" + obj.getWindturbineId());
|
|
|
+
|
|
|
+ return obj;
|
|
|
+ }
|
|
|
+ /**
|
|
|
+ * 曲线偏差率 分段的+全部的
|
|
|
+ * 3-5 5-10 10-12 12-25
|
|
|
+ * @return
|
|
|
+ */
|
|
|
+ private void dataCurveRatio(LineCurveFitting lf, ProEconPowerFittingAnalySis obj) {
|
|
|
+ DecimalFormat df = new DecimalFormat("0.00");
|
|
|
+ try{
|
|
|
+ //风速、实际功率
|
|
|
+ List<Point> point = new ArrayList<>(); //3-25m
|
|
|
+ List<Point> point5 = new ArrayList<>(); //分段
|
|
|
+ List<Point> point10 = new ArrayList<>(); //分段
|
|
|
+ List<Point> point12= new ArrayList<>(); //分段
|
|
|
+ List<Point> point25 = new ArrayList<>(); //分段
|
|
|
+ List<Point> line = lf.getYLines();
|
|
|
+ for (int i = 1; i < line.size(); i++){
|
|
|
+ double speed = Double.valueOf(df.format(line.get(i).getX()));
|
|
|
+ if (speed >= 3 && speed < 5)
|
|
|
+ point5.add(new Point(speed, line.get(i).getY()));
|
|
|
+ if (speed >= 5 && speed < 10)
|
|
|
+ point10.add(new Point(speed, line.get(i).getY()));
|
|
|
+ if (speed >= 10 && speed < 12)
|
|
|
+ point12.add(new Point(speed, line.get(i).getY()));
|
|
|
+ if (speed >= 12 && speed <= 25)
|
|
|
+ point25.add(new Point(speed, line.get(i).getY()));
|
|
|
+ if (speed >= 3 && speed <= 25){
|
|
|
+ point.add(new Point(speed, line.get(i).getY()));
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ //保证功率
|
|
|
+ List<Point> points = new ArrayList<>(); //3-25m
|
|
|
+ List<Point> points5 = new ArrayList<>(); //分段
|
|
|
+ List<Point> points10 = new ArrayList<>(); //分段
|
|
|
+ List<Point> points12 = new ArrayList<>(); //分段
|
|
|
+ List<Point> points25 = new ArrayList<>(); //分段
|
|
|
+ List<ProBasicModelPower> list = InitialRunner.modelPowerDetailNewMap.get(InitialRunner.wtNewMap.get(obj.getWindturbineId()).getModelId());
|
|
|
+ for (int i = 0; i < list.size(); i++){
|
|
|
+ ProBasicModelPower power = list.get(i);
|
|
|
+ if (power.getSpeed() >= 3 && power.getSpeed() < 5)
|
|
|
+ points5.add(new Point(power.getSpeed(), power.getEnsurePower()));
|
|
|
+ if (power.getSpeed() >= 5 && power.getSpeed() < 10)
|
|
|
+ points10.add(new Point(power.getSpeed(), power.getEnsurePower()));
|
|
|
+ if (power.getSpeed() >= 10 && power.getSpeed() < 12)
|
|
|
+ points12.add(new Point(power.getSpeed(), power.getEnsurePower()));
|
|
|
+ if (power.getSpeed() >= 12 && power.getSpeed() <= 25)
|
|
|
+ points25.add(new Point(power.getSpeed(), power.getEnsurePower()));
|
|
|
+ if (power.getSpeed() >= 3 && power.getSpeed() <= 25)
|
|
|
+ points.add(new Point(power.getSpeed(), power.getEnsurePower()));
|
|
|
+ }
|
|
|
+
|
|
|
+ double maxp5 = list.stream().filter(f -> 5.0 == f.getSpeed()).collect(Collectors.toList()).get(0).getEnsurePower();
|
|
|
+ double maxp10 = list.stream().filter(f -> 10.0 == f.getSpeed()).collect(Collectors.toList()).get(0).getEnsurePower();
|
|
|
+ double maxp12 = list.stream().filter(f -> 12.0 == f.getSpeed()).collect(Collectors.toList()).get(0).getEnsurePower();
|
|
|
+ double maxp25 = list.stream().filter(f -> 25.0 == f.getSpeed()).collect(Collectors.toList()).get(0).getEnsurePower();
|
|
|
+
|
|
|
+ //曲线偏差率
|
|
|
+ double pcl = PowerFittingALG.curveDeviationRatio2(point, points, maxp25, 3, 25);
|
|
|
+ double pcl5 = PowerFittingALG.curveDeviationRatio2(point5, points5, maxp5, 3, 5);
|
|
|
+ double pcl10 = PowerFittingALG.curveDeviationRatio2(point10, points10, maxp10, 5, 10);
|
|
|
+ double pcl12 = PowerFittingALG.curveDeviationRatio2(point12, points12, maxp12, 10, 12);
|
|
|
+ double pcl25 = PowerFittingALG.curveDeviationRatio2(point25, points25, maxp25, 12, 25);
|
|
|
+
|
|
|
+ obj.setPcratio(Double.valueOf(df.format(pcl)));
|
|
|
+ obj.setPc5ratio(Double.valueOf(df.format(pcl5)));
|
|
|
+ obj.setPc10ratio(Double.valueOf(df.format(pcl10)));
|
|
|
+ obj.setPc12ratio(Double.valueOf(df.format(pcl12)));
|
|
|
+ obj.setPc25ratio(Double.valueOf(df.format(pcl25)));
|
|
|
+
|
|
|
+ } catch (Exception e){
|
|
|
+ log.error("DataFittingService--dataCurveRatio",e);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ private String fittingAssemble(LineCurveFitting lf){
|
|
|
+ StringBuilder sb = setTitle();
|
|
|
+ for (int i = 0; i < lf.getYLines().size(); i++){
|
|
|
+ Point cp = lf.getCpValue().get(i);
|
|
|
+ Point gl = lf.getYLines().get(i);
|
|
|
+
|
|
|
+ String stx = String.format("%.2f", gl.getX());
|
|
|
+ double x = Double.parseDouble(stx);
|
|
|
+ String sty = String.format("%.2f", gl.getY());
|
|
|
+ double y = Double.parseDouble(sty);
|
|
|
+ String stcp = String.format("%.4f", cp.getY());
|
|
|
+ double z = Double.parseDouble(stcp);
|
|
|
+ sb.append(x).append(",").append(y).append(",").append(z).append("\n");
|
|
|
+ }
|
|
|
+
|
|
|
+ return sb.toString();
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
}
|
|
|
|