EllipsoidOutlineGeometry-34b199b4.js 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456
  1. /* This file is automatically rebuilt by the Cesium build process. */
  2. define(['exports', './GeometryOffsetAttribute-3e8c299c', './Transforms-a076dbe6', './Matrix2-fc7e9822', './ComponentDatatype-4a60b8d6', './defaultValue-94c3e563', './RuntimeError-c581ca93', './GeometryAttribute-2ecf73f6', './GeometryAttributes-7df9bef6', './IndexDatatype-db156785'], (function (exports, GeometryOffsetAttribute, Transforms, Matrix2, ComponentDatatype, defaultValue, RuntimeError, GeometryAttribute, GeometryAttributes, IndexDatatype) { 'use strict';
  3. const defaultRadii = new Matrix2.Cartesian3(1.0, 1.0, 1.0);
  4. const cos = Math.cos;
  5. const sin = Math.sin;
  6. /**
  7. * A description of the outline of an ellipsoid centered at the origin.
  8. *
  9. * @alias EllipsoidOutlineGeometry
  10. * @constructor
  11. *
  12. * @param {Object} [options] Object with the following properties:
  13. * @param {Cartesian3} [options.radii=Cartesian3(1.0, 1.0, 1.0)] The radii of the ellipsoid in the x, y, and z directions.
  14. * @param {Cartesian3} [options.innerRadii=options.radii] The inner radii of the ellipsoid in the x, y, and z directions.
  15. * @param {Number} [options.minimumClock=0.0] The minimum angle lying in the xy-plane measured from the positive x-axis and toward the positive y-axis.
  16. * @param {Number} [options.maximumClock=2*PI] The maximum angle lying in the xy-plane measured from the positive x-axis and toward the positive y-axis.
  17. * @param {Number} [options.minimumCone=0.0] The minimum angle measured from the positive z-axis and toward the negative z-axis.
  18. * @param {Number} [options.maximumCone=PI] The maximum angle measured from the positive z-axis and toward the negative z-axis.
  19. * @param {Number} [options.stackPartitions=10] The count of stacks for the ellipsoid (1 greater than the number of parallel lines).
  20. * @param {Number} [options.slicePartitions=8] The count of slices for the ellipsoid (Equal to the number of radial lines).
  21. * @param {Number} [options.subdivisions=128] The number of points per line, determining the granularity of the curvature.
  22. *
  23. * @exception {DeveloperError} options.stackPartitions must be greater than or equal to one.
  24. * @exception {DeveloperError} options.slicePartitions must be greater than or equal to zero.
  25. * @exception {DeveloperError} options.subdivisions must be greater than or equal to zero.
  26. *
  27. * @example
  28. * const ellipsoid = new Cesium.EllipsoidOutlineGeometry({
  29. * radii : new Cesium.Cartesian3(1000000.0, 500000.0, 500000.0),
  30. * stackPartitions: 6,
  31. * slicePartitions: 5
  32. * });
  33. * const geometry = Cesium.EllipsoidOutlineGeometry.createGeometry(ellipsoid);
  34. */
  35. function EllipsoidOutlineGeometry(options) {
  36. options = defaultValue.defaultValue(options, defaultValue.defaultValue.EMPTY_OBJECT);
  37. const radii = defaultValue.defaultValue(options.radii, defaultRadii);
  38. const innerRadii = defaultValue.defaultValue(options.innerRadii, radii);
  39. const minimumClock = defaultValue.defaultValue(options.minimumClock, 0.0);
  40. const maximumClock = defaultValue.defaultValue(options.maximumClock, ComponentDatatype.CesiumMath.TWO_PI);
  41. const minimumCone = defaultValue.defaultValue(options.minimumCone, 0.0);
  42. const maximumCone = defaultValue.defaultValue(options.maximumCone, ComponentDatatype.CesiumMath.PI);
  43. const stackPartitions = Math.round(defaultValue.defaultValue(options.stackPartitions, 10));
  44. const slicePartitions = Math.round(defaultValue.defaultValue(options.slicePartitions, 8));
  45. const subdivisions = Math.round(defaultValue.defaultValue(options.subdivisions, 128));
  46. //>>includeStart('debug', pragmas.debug);
  47. if (stackPartitions < 1) {
  48. throw new RuntimeError.DeveloperError("options.stackPartitions cannot be less than 1");
  49. }
  50. if (slicePartitions < 0) {
  51. throw new RuntimeError.DeveloperError("options.slicePartitions cannot be less than 0");
  52. }
  53. if (subdivisions < 0) {
  54. throw new RuntimeError.DeveloperError(
  55. "options.subdivisions must be greater than or equal to zero."
  56. );
  57. }
  58. if (
  59. defaultValue.defined(options.offsetAttribute) &&
  60. options.offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.TOP
  61. ) {
  62. throw new RuntimeError.DeveloperError(
  63. "GeometryOffsetAttribute.TOP is not a supported options.offsetAttribute for this geometry."
  64. );
  65. }
  66. //>>includeEnd('debug');
  67. this._radii = Matrix2.Cartesian3.clone(radii);
  68. this._innerRadii = Matrix2.Cartesian3.clone(innerRadii);
  69. this._minimumClock = minimumClock;
  70. this._maximumClock = maximumClock;
  71. this._minimumCone = minimumCone;
  72. this._maximumCone = maximumCone;
  73. this._stackPartitions = stackPartitions;
  74. this._slicePartitions = slicePartitions;
  75. this._subdivisions = subdivisions;
  76. this._offsetAttribute = options.offsetAttribute;
  77. this._workerName = "createEllipsoidOutlineGeometry";
  78. }
  79. /**
  80. * The number of elements used to pack the object into an array.
  81. * @type {Number}
  82. */
  83. EllipsoidOutlineGeometry.packedLength = 2 * Matrix2.Cartesian3.packedLength + 8;
  84. /**
  85. * Stores the provided instance into the provided array.
  86. *
  87. * @param {EllipsoidOutlineGeometry} value The value to pack.
  88. * @param {Number[]} array The array to pack into.
  89. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
  90. *
  91. * @returns {Number[]} The array that was packed into
  92. */
  93. EllipsoidOutlineGeometry.pack = function (value, array, startingIndex) {
  94. //>>includeStart('debug', pragmas.debug);
  95. if (!defaultValue.defined(value)) {
  96. throw new RuntimeError.DeveloperError("value is required");
  97. }
  98. if (!defaultValue.defined(array)) {
  99. throw new RuntimeError.DeveloperError("array is required");
  100. }
  101. //>>includeEnd('debug');
  102. startingIndex = defaultValue.defaultValue(startingIndex, 0);
  103. Matrix2.Cartesian3.pack(value._radii, array, startingIndex);
  104. startingIndex += Matrix2.Cartesian3.packedLength;
  105. Matrix2.Cartesian3.pack(value._innerRadii, array, startingIndex);
  106. startingIndex += Matrix2.Cartesian3.packedLength;
  107. array[startingIndex++] = value._minimumClock;
  108. array[startingIndex++] = value._maximumClock;
  109. array[startingIndex++] = value._minimumCone;
  110. array[startingIndex++] = value._maximumCone;
  111. array[startingIndex++] = value._stackPartitions;
  112. array[startingIndex++] = value._slicePartitions;
  113. array[startingIndex++] = value._subdivisions;
  114. array[startingIndex] = defaultValue.defaultValue(value._offsetAttribute, -1);
  115. return array;
  116. };
  117. const scratchRadii = new Matrix2.Cartesian3();
  118. const scratchInnerRadii = new Matrix2.Cartesian3();
  119. const scratchOptions = {
  120. radii: scratchRadii,
  121. innerRadii: scratchInnerRadii,
  122. minimumClock: undefined,
  123. maximumClock: undefined,
  124. minimumCone: undefined,
  125. maximumCone: undefined,
  126. stackPartitions: undefined,
  127. slicePartitions: undefined,
  128. subdivisions: undefined,
  129. offsetAttribute: undefined,
  130. };
  131. /**
  132. * Retrieves an instance from a packed array.
  133. *
  134. * @param {Number[]} array The packed array.
  135. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
  136. * @param {EllipsoidOutlineGeometry} [result] The object into which to store the result.
  137. * @returns {EllipsoidOutlineGeometry} The modified result parameter or a new EllipsoidOutlineGeometry instance if one was not provided.
  138. */
  139. EllipsoidOutlineGeometry.unpack = function (array, startingIndex, result) {
  140. //>>includeStart('debug', pragmas.debug);
  141. if (!defaultValue.defined(array)) {
  142. throw new RuntimeError.DeveloperError("array is required");
  143. }
  144. //>>includeEnd('debug');
  145. startingIndex = defaultValue.defaultValue(startingIndex, 0);
  146. const radii = Matrix2.Cartesian3.unpack(array, startingIndex, scratchRadii);
  147. startingIndex += Matrix2.Cartesian3.packedLength;
  148. const innerRadii = Matrix2.Cartesian3.unpack(array, startingIndex, scratchInnerRadii);
  149. startingIndex += Matrix2.Cartesian3.packedLength;
  150. const minimumClock = array[startingIndex++];
  151. const maximumClock = array[startingIndex++];
  152. const minimumCone = array[startingIndex++];
  153. const maximumCone = array[startingIndex++];
  154. const stackPartitions = array[startingIndex++];
  155. const slicePartitions = array[startingIndex++];
  156. const subdivisions = array[startingIndex++];
  157. const offsetAttribute = array[startingIndex];
  158. if (!defaultValue.defined(result)) {
  159. scratchOptions.minimumClock = minimumClock;
  160. scratchOptions.maximumClock = maximumClock;
  161. scratchOptions.minimumCone = minimumCone;
  162. scratchOptions.maximumCone = maximumCone;
  163. scratchOptions.stackPartitions = stackPartitions;
  164. scratchOptions.slicePartitions = slicePartitions;
  165. scratchOptions.subdivisions = subdivisions;
  166. scratchOptions.offsetAttribute =
  167. offsetAttribute === -1 ? undefined : offsetAttribute;
  168. return new EllipsoidOutlineGeometry(scratchOptions);
  169. }
  170. result._radii = Matrix2.Cartesian3.clone(radii, result._radii);
  171. result._innerRadii = Matrix2.Cartesian3.clone(innerRadii, result._innerRadii);
  172. result._minimumClock = minimumClock;
  173. result._maximumClock = maximumClock;
  174. result._minimumCone = minimumCone;
  175. result._maximumCone = maximumCone;
  176. result._stackPartitions = stackPartitions;
  177. result._slicePartitions = slicePartitions;
  178. result._subdivisions = subdivisions;
  179. result._offsetAttribute =
  180. offsetAttribute === -1 ? undefined : offsetAttribute;
  181. return result;
  182. };
  183. /**
  184. * Computes the geometric representation of an outline of an ellipsoid, including its vertices, indices, and a bounding sphere.
  185. *
  186. * @param {EllipsoidOutlineGeometry} ellipsoidGeometry A description of the ellipsoid outline.
  187. * @returns {Geometry|undefined} The computed vertices and indices.
  188. */
  189. EllipsoidOutlineGeometry.createGeometry = function (ellipsoidGeometry) {
  190. const radii = ellipsoidGeometry._radii;
  191. if (radii.x <= 0 || radii.y <= 0 || radii.z <= 0) {
  192. return;
  193. }
  194. const innerRadii = ellipsoidGeometry._innerRadii;
  195. if (innerRadii.x <= 0 || innerRadii.y <= 0 || innerRadii.z <= 0) {
  196. return;
  197. }
  198. const minimumClock = ellipsoidGeometry._minimumClock;
  199. const maximumClock = ellipsoidGeometry._maximumClock;
  200. const minimumCone = ellipsoidGeometry._minimumCone;
  201. const maximumCone = ellipsoidGeometry._maximumCone;
  202. const subdivisions = ellipsoidGeometry._subdivisions;
  203. const ellipsoid = Matrix2.Ellipsoid.fromCartesian3(radii);
  204. // Add an extra slice and stack to remain consistent with EllipsoidGeometry
  205. let slicePartitions = ellipsoidGeometry._slicePartitions + 1;
  206. let stackPartitions = ellipsoidGeometry._stackPartitions + 1;
  207. slicePartitions = Math.round(
  208. (slicePartitions * Math.abs(maximumClock - minimumClock)) /
  209. ComponentDatatype.CesiumMath.TWO_PI
  210. );
  211. stackPartitions = Math.round(
  212. (stackPartitions * Math.abs(maximumCone - minimumCone)) / ComponentDatatype.CesiumMath.PI
  213. );
  214. if (slicePartitions < 2) {
  215. slicePartitions = 2;
  216. }
  217. if (stackPartitions < 2) {
  218. stackPartitions = 2;
  219. }
  220. let extraIndices = 0;
  221. let vertexMultiplier = 1.0;
  222. const hasInnerSurface =
  223. innerRadii.x !== radii.x ||
  224. innerRadii.y !== radii.y ||
  225. innerRadii.z !== radii.z;
  226. let isTopOpen = false;
  227. let isBotOpen = false;
  228. if (hasInnerSurface) {
  229. vertexMultiplier = 2.0;
  230. // Add 2x slicePartitions to connect the top/bottom of the outer to
  231. // the top/bottom of the inner
  232. if (minimumCone > 0.0) {
  233. isTopOpen = true;
  234. extraIndices += slicePartitions;
  235. }
  236. if (maximumCone < Math.PI) {
  237. isBotOpen = true;
  238. extraIndices += slicePartitions;
  239. }
  240. }
  241. const vertexCount =
  242. subdivisions * vertexMultiplier * (stackPartitions + slicePartitions);
  243. const positions = new Float64Array(vertexCount * 3);
  244. // Multiply by two because two points define each line segment
  245. const numIndices =
  246. 2 *
  247. (vertexCount +
  248. extraIndices -
  249. (slicePartitions + stackPartitions) * vertexMultiplier);
  250. const indices = IndexDatatype.IndexDatatype.createTypedArray(vertexCount, numIndices);
  251. let i;
  252. let j;
  253. let theta;
  254. let phi;
  255. let index = 0;
  256. // Calculate sin/cos phi
  257. const sinPhi = new Array(stackPartitions);
  258. const cosPhi = new Array(stackPartitions);
  259. for (i = 0; i < stackPartitions; i++) {
  260. phi =
  261. minimumCone + (i * (maximumCone - minimumCone)) / (stackPartitions - 1);
  262. sinPhi[i] = sin(phi);
  263. cosPhi[i] = cos(phi);
  264. }
  265. // Calculate sin/cos theta
  266. const sinTheta = new Array(subdivisions);
  267. const cosTheta = new Array(subdivisions);
  268. for (i = 0; i < subdivisions; i++) {
  269. theta =
  270. minimumClock + (i * (maximumClock - minimumClock)) / (subdivisions - 1);
  271. sinTheta[i] = sin(theta);
  272. cosTheta[i] = cos(theta);
  273. }
  274. // Calculate the latitude lines on the outer surface
  275. for (i = 0; i < stackPartitions; i++) {
  276. for (j = 0; j < subdivisions; j++) {
  277. positions[index++] = radii.x * sinPhi[i] * cosTheta[j];
  278. positions[index++] = radii.y * sinPhi[i] * sinTheta[j];
  279. positions[index++] = radii.z * cosPhi[i];
  280. }
  281. }
  282. // Calculate the latitude lines on the inner surface
  283. if (hasInnerSurface) {
  284. for (i = 0; i < stackPartitions; i++) {
  285. for (j = 0; j < subdivisions; j++) {
  286. positions[index++] = innerRadii.x * sinPhi[i] * cosTheta[j];
  287. positions[index++] = innerRadii.y * sinPhi[i] * sinTheta[j];
  288. positions[index++] = innerRadii.z * cosPhi[i];
  289. }
  290. }
  291. }
  292. // Calculate sin/cos phi
  293. sinPhi.length = subdivisions;
  294. cosPhi.length = subdivisions;
  295. for (i = 0; i < subdivisions; i++) {
  296. phi = minimumCone + (i * (maximumCone - minimumCone)) / (subdivisions - 1);
  297. sinPhi[i] = sin(phi);
  298. cosPhi[i] = cos(phi);
  299. }
  300. // Calculate sin/cos theta for each slice partition
  301. sinTheta.length = slicePartitions;
  302. cosTheta.length = slicePartitions;
  303. for (i = 0; i < slicePartitions; i++) {
  304. theta =
  305. minimumClock +
  306. (i * (maximumClock - minimumClock)) / (slicePartitions - 1);
  307. sinTheta[i] = sin(theta);
  308. cosTheta[i] = cos(theta);
  309. }
  310. // Calculate the longitude lines on the outer surface
  311. for (i = 0; i < subdivisions; i++) {
  312. for (j = 0; j < slicePartitions; j++) {
  313. positions[index++] = radii.x * sinPhi[i] * cosTheta[j];
  314. positions[index++] = radii.y * sinPhi[i] * sinTheta[j];
  315. positions[index++] = radii.z * cosPhi[i];
  316. }
  317. }
  318. // Calculate the longitude lines on the inner surface
  319. if (hasInnerSurface) {
  320. for (i = 0; i < subdivisions; i++) {
  321. for (j = 0; j < slicePartitions; j++) {
  322. positions[index++] = innerRadii.x * sinPhi[i] * cosTheta[j];
  323. positions[index++] = innerRadii.y * sinPhi[i] * sinTheta[j];
  324. positions[index++] = innerRadii.z * cosPhi[i];
  325. }
  326. }
  327. }
  328. // Create indices for the latitude lines
  329. index = 0;
  330. for (i = 0; i < stackPartitions * vertexMultiplier; i++) {
  331. const topOffset = i * subdivisions;
  332. for (j = 0; j < subdivisions - 1; j++) {
  333. indices[index++] = topOffset + j;
  334. indices[index++] = topOffset + j + 1;
  335. }
  336. }
  337. // Create indices for the outer longitude lines
  338. let offset = stackPartitions * subdivisions * vertexMultiplier;
  339. for (i = 0; i < slicePartitions; i++) {
  340. for (j = 0; j < subdivisions - 1; j++) {
  341. indices[index++] = offset + i + j * slicePartitions;
  342. indices[index++] = offset + i + (j + 1) * slicePartitions;
  343. }
  344. }
  345. // Create indices for the inner longitude lines
  346. if (hasInnerSurface) {
  347. offset =
  348. stackPartitions * subdivisions * vertexMultiplier +
  349. slicePartitions * subdivisions;
  350. for (i = 0; i < slicePartitions; i++) {
  351. for (j = 0; j < subdivisions - 1; j++) {
  352. indices[index++] = offset + i + j * slicePartitions;
  353. indices[index++] = offset + i + (j + 1) * slicePartitions;
  354. }
  355. }
  356. }
  357. if (hasInnerSurface) {
  358. let outerOffset = stackPartitions * subdivisions * vertexMultiplier;
  359. let innerOffset = outerOffset + subdivisions * slicePartitions;
  360. if (isTopOpen) {
  361. // Draw lines from the top of the inner surface to the top of the outer surface
  362. for (i = 0; i < slicePartitions; i++) {
  363. indices[index++] = outerOffset + i;
  364. indices[index++] = innerOffset + i;
  365. }
  366. }
  367. if (isBotOpen) {
  368. // Draw lines from the top of the inner surface to the top of the outer surface
  369. outerOffset += subdivisions * slicePartitions - slicePartitions;
  370. innerOffset += subdivisions * slicePartitions - slicePartitions;
  371. for (i = 0; i < slicePartitions; i++) {
  372. indices[index++] = outerOffset + i;
  373. indices[index++] = innerOffset + i;
  374. }
  375. }
  376. }
  377. const attributes = new GeometryAttributes.GeometryAttributes({
  378. position: new GeometryAttribute.GeometryAttribute({
  379. componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE,
  380. componentsPerAttribute: 3,
  381. values: positions,
  382. }),
  383. });
  384. if (defaultValue.defined(ellipsoidGeometry._offsetAttribute)) {
  385. const length = positions.length;
  386. const applyOffset = new Uint8Array(length / 3);
  387. const offsetValue =
  388. ellipsoidGeometry._offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.NONE
  389. ? 0
  390. : 1;
  391. GeometryOffsetAttribute.arrayFill(applyOffset, offsetValue);
  392. attributes.applyOffset = new GeometryAttribute.GeometryAttribute({
  393. componentDatatype: ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE,
  394. componentsPerAttribute: 1,
  395. values: applyOffset,
  396. });
  397. }
  398. return new GeometryAttribute.Geometry({
  399. attributes: attributes,
  400. indices: indices,
  401. primitiveType: GeometryAttribute.PrimitiveType.LINES,
  402. boundingSphere: Transforms.BoundingSphere.fromEllipsoid(ellipsoid),
  403. offsetAttribute: ellipsoidGeometry._offsetAttribute,
  404. });
  405. };
  406. exports.EllipsoidOutlineGeometry = EllipsoidOutlineGeometry;
  407. }));