/* This file is automatically rebuilt by the Cesium build process. */ define(['./GeometryOffsetAttribute-3e8c299c', './arrayRemoveDuplicates-06991c15', './Transforms-a076dbe6', './Matrix2-fc7e9822', './RuntimeError-c581ca93', './ComponentDatatype-4a60b8d6', './PolylineVolumeGeometryLibrary-759a8d46', './CorridorGeometryLibrary-3d47380e', './defaultValue-94c3e563', './GeometryAttribute-2ecf73f6', './GeometryAttributes-7df9bef6', './IndexDatatype-db156785', './PolygonPipeline-cc031b9f', './VertexFormat-e46f29d6', './_commonjsHelpers-3aae1032-f55dc0c4', './combine-761d9c3f', './WebGLConstants-7dccdc96', './EllipsoidTangentPlane-d2c0c530', './AxisAlignedBoundingBox-8103739f', './IntersectionTests-5deed78b', './Plane-e20fba8c', './PolylinePipeline-7608e667', './EllipsoidGeodesic-dc94f381', './EllipsoidRhumbLine-daebc75b'], (function (GeometryOffsetAttribute, arrayRemoveDuplicates, Transforms, Matrix2, RuntimeError, ComponentDatatype, PolylineVolumeGeometryLibrary, CorridorGeometryLibrary, defaultValue, GeometryAttribute, GeometryAttributes, IndexDatatype, PolygonPipeline, VertexFormat, _commonjsHelpers3aae1032, combine$1, WebGLConstants, EllipsoidTangentPlane, AxisAlignedBoundingBox, IntersectionTests, Plane, PolylinePipeline, EllipsoidGeodesic, EllipsoidRhumbLine) { 'use strict'; const cartesian1 = new Matrix2.Cartesian3(); const cartesian2 = new Matrix2.Cartesian3(); const cartesian3 = new Matrix2.Cartesian3(); const cartesian4 = new Matrix2.Cartesian3(); const cartesian5 = new Matrix2.Cartesian3(); const cartesian6 = new Matrix2.Cartesian3(); const scratch1 = new Matrix2.Cartesian3(); const scratch2 = new Matrix2.Cartesian3(); function scaleToSurface(positions, ellipsoid) { for (let i = 0; i < positions.length; i++) { positions[i] = ellipsoid.scaleToGeodeticSurface(positions[i], positions[i]); } return positions; } function addNormals(attr, normal, left, front, back, vertexFormat) { const normals = attr.normals; const tangents = attr.tangents; const bitangents = attr.bitangents; const forward = Matrix2.Cartesian3.normalize( Matrix2.Cartesian3.cross(left, normal, scratch1), scratch1 ); if (vertexFormat.normal) { CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute(normals, normal, front, back); } if (vertexFormat.tangent) { CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute(tangents, forward, front, back); } if (vertexFormat.bitangent) { CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute(bitangents, left, front, back); } } function combine(computedPositions, vertexFormat, ellipsoid) { const positions = computedPositions.positions; const corners = computedPositions.corners; const endPositions = computedPositions.endPositions; const computedLefts = computedPositions.lefts; const computedNormals = computedPositions.normals; const attributes = new GeometryAttributes.GeometryAttributes(); let corner; let leftCount = 0; let rightCount = 0; let i; let indicesLength = 0; let length; for (i = 0; i < positions.length; i += 2) { length = positions[i].length - 3; leftCount += length; //subtracting 3 to account for duplicate points at corners indicesLength += length * 2; rightCount += positions[i + 1].length - 3; } leftCount += 3; //add back count for end positions rightCount += 3; for (i = 0; i < corners.length; i++) { corner = corners[i]; const leftSide = corners[i].leftPositions; if (defaultValue.defined(leftSide)) { length = leftSide.length; leftCount += length; indicesLength += length; } else { length = corners[i].rightPositions.length; rightCount += length; indicesLength += length; } } const addEndPositions = defaultValue.defined(endPositions); let endPositionLength; if (addEndPositions) { endPositionLength = endPositions[0].length - 3; leftCount += endPositionLength; rightCount += endPositionLength; endPositionLength /= 3; indicesLength += endPositionLength * 6; } const size = leftCount + rightCount; const finalPositions = new Float64Array(size); const normals = vertexFormat.normal ? new Float32Array(size) : undefined; const tangents = vertexFormat.tangent ? new Float32Array(size) : undefined; const bitangents = vertexFormat.bitangent ? new Float32Array(size) : undefined; const attr = { normals: normals, tangents: tangents, bitangents: bitangents, }; let front = 0; let back = size - 1; let UL, LL, UR, LR; let normal = cartesian1; let left = cartesian2; let rightPos, leftPos; const halfLength = endPositionLength / 2; const indices = IndexDatatype.IndexDatatype.createTypedArray(size / 3, indicesLength); let index = 0; if (addEndPositions) { // add rounded end leftPos = cartesian3; rightPos = cartesian4; const firstEndPositions = endPositions[0]; normal = Matrix2.Cartesian3.fromArray(computedNormals, 0, normal); left = Matrix2.Cartesian3.fromArray(computedLefts, 0, left); for (i = 0; i < halfLength; i++) { leftPos = Matrix2.Cartesian3.fromArray( firstEndPositions, (halfLength - 1 - i) * 3, leftPos ); rightPos = Matrix2.Cartesian3.fromArray( firstEndPositions, (halfLength + i) * 3, rightPos ); CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute(finalPositions, rightPos, front); CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute( finalPositions, leftPos, undefined, back ); addNormals(attr, normal, left, front, back, vertexFormat); LL = front / 3; LR = LL + 1; UL = (back - 2) / 3; UR = UL - 1; indices[index++] = UL; indices[index++] = LL; indices[index++] = UR; indices[index++] = UR; indices[index++] = LL; indices[index++] = LR; front += 3; back -= 3; } } let posIndex = 0; let compIndex = 0; let rightEdge = positions[posIndex++]; //add first two edges let leftEdge = positions[posIndex++]; finalPositions.set(rightEdge, front); finalPositions.set(leftEdge, back - leftEdge.length + 1); left = Matrix2.Cartesian3.fromArray(computedLefts, compIndex, left); let rightNormal; let leftNormal; length = leftEdge.length - 3; for (i = 0; i < length; i += 3) { rightNormal = ellipsoid.geodeticSurfaceNormal( Matrix2.Cartesian3.fromArray(rightEdge, i, scratch1), scratch1 ); leftNormal = ellipsoid.geodeticSurfaceNormal( Matrix2.Cartesian3.fromArray(leftEdge, length - i, scratch2), scratch2 ); normal = Matrix2.Cartesian3.normalize( Matrix2.Cartesian3.add(rightNormal, leftNormal, normal), normal ); addNormals(attr, normal, left, front, back, vertexFormat); LL = front / 3; LR = LL + 1; UL = (back - 2) / 3; UR = UL - 1; indices[index++] = UL; indices[index++] = LL; indices[index++] = UR; indices[index++] = UR; indices[index++] = LL; indices[index++] = LR; front += 3; back -= 3; } rightNormal = ellipsoid.geodeticSurfaceNormal( Matrix2.Cartesian3.fromArray(rightEdge, length, scratch1), scratch1 ); leftNormal = ellipsoid.geodeticSurfaceNormal( Matrix2.Cartesian3.fromArray(leftEdge, length, scratch2), scratch2 ); normal = Matrix2.Cartesian3.normalize( Matrix2.Cartesian3.add(rightNormal, leftNormal, normal), normal ); compIndex += 3; for (i = 0; i < corners.length; i++) { let j; corner = corners[i]; const l = corner.leftPositions; const r = corner.rightPositions; let pivot; let start; let outsidePoint = cartesian6; let previousPoint = cartesian3; let nextPoint = cartesian4; normal = Matrix2.Cartesian3.fromArray(computedNormals, compIndex, normal); if (defaultValue.defined(l)) { addNormals(attr, normal, left, undefined, back, vertexFormat); back -= 3; pivot = LR; start = UR; for (j = 0; j < l.length / 3; j++) { outsidePoint = Matrix2.Cartesian3.fromArray(l, j * 3, outsidePoint); indices[index++] = pivot; indices[index++] = start - j - 1; indices[index++] = start - j; CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute( finalPositions, outsidePoint, undefined, back ); previousPoint = Matrix2.Cartesian3.fromArray( finalPositions, (start - j - 1) * 3, previousPoint ); nextPoint = Matrix2.Cartesian3.fromArray(finalPositions, pivot * 3, nextPoint); left = Matrix2.Cartesian3.normalize( Matrix2.Cartesian3.subtract(previousPoint, nextPoint, left), left ); addNormals(attr, normal, left, undefined, back, vertexFormat); back -= 3; } outsidePoint = Matrix2.Cartesian3.fromArray( finalPositions, pivot * 3, outsidePoint ); previousPoint = Matrix2.Cartesian3.subtract( Matrix2.Cartesian3.fromArray(finalPositions, start * 3, previousPoint), outsidePoint, previousPoint ); nextPoint = Matrix2.Cartesian3.subtract( Matrix2.Cartesian3.fromArray(finalPositions, (start - j) * 3, nextPoint), outsidePoint, nextPoint ); left = Matrix2.Cartesian3.normalize( Matrix2.Cartesian3.add(previousPoint, nextPoint, left), left ); addNormals(attr, normal, left, front, undefined, vertexFormat); front += 3; } else { addNormals(attr, normal, left, front, undefined, vertexFormat); front += 3; pivot = UR; start = LR; for (j = 0; j < r.length / 3; j++) { outsidePoint = Matrix2.Cartesian3.fromArray(r, j * 3, outsidePoint); indices[index++] = pivot; indices[index++] = start + j; indices[index++] = start + j + 1; CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute( finalPositions, outsidePoint, front ); previousPoint = Matrix2.Cartesian3.fromArray( finalPositions, pivot * 3, previousPoint ); nextPoint = Matrix2.Cartesian3.fromArray( finalPositions, (start + j) * 3, nextPoint ); left = Matrix2.Cartesian3.normalize( Matrix2.Cartesian3.subtract(previousPoint, nextPoint, left), left ); addNormals(attr, normal, left, front, undefined, vertexFormat); front += 3; } outsidePoint = Matrix2.Cartesian3.fromArray( finalPositions, pivot * 3, outsidePoint ); previousPoint = Matrix2.Cartesian3.subtract( Matrix2.Cartesian3.fromArray(finalPositions, (start + j) * 3, previousPoint), outsidePoint, previousPoint ); nextPoint = Matrix2.Cartesian3.subtract( Matrix2.Cartesian3.fromArray(finalPositions, start * 3, nextPoint), outsidePoint, nextPoint ); left = Matrix2.Cartesian3.normalize( Matrix2.Cartesian3.negate(Matrix2.Cartesian3.add(nextPoint, previousPoint, left), left), left ); addNormals(attr, normal, left, undefined, back, vertexFormat); back -= 3; } rightEdge = positions[posIndex++]; leftEdge = positions[posIndex++]; rightEdge.splice(0, 3); //remove duplicate points added by corner leftEdge.splice(leftEdge.length - 3, 3); finalPositions.set(rightEdge, front); finalPositions.set(leftEdge, back - leftEdge.length + 1); length = leftEdge.length - 3; compIndex += 3; left = Matrix2.Cartesian3.fromArray(computedLefts, compIndex, left); for (j = 0; j < leftEdge.length; j += 3) { rightNormal = ellipsoid.geodeticSurfaceNormal( Matrix2.Cartesian3.fromArray(rightEdge, j, scratch1), scratch1 ); leftNormal = ellipsoid.geodeticSurfaceNormal( Matrix2.Cartesian3.fromArray(leftEdge, length - j, scratch2), scratch2 ); normal = Matrix2.Cartesian3.normalize( Matrix2.Cartesian3.add(rightNormal, leftNormal, normal), normal ); addNormals(attr, normal, left, front, back, vertexFormat); LR = front / 3; LL = LR - 1; UR = (back - 2) / 3; UL = UR + 1; indices[index++] = UL; indices[index++] = LL; indices[index++] = UR; indices[index++] = UR; indices[index++] = LL; indices[index++] = LR; front += 3; back -= 3; } front -= 3; back += 3; } normal = Matrix2.Cartesian3.fromArray( computedNormals, computedNormals.length - 3, normal ); addNormals(attr, normal, left, front, back, vertexFormat); if (addEndPositions) { // add rounded end front += 3; back -= 3; leftPos = cartesian3; rightPos = cartesian4; const lastEndPositions = endPositions[1]; for (i = 0; i < halfLength; i++) { leftPos = Matrix2.Cartesian3.fromArray( lastEndPositions, (endPositionLength - i - 1) * 3, leftPos ); rightPos = Matrix2.Cartesian3.fromArray(lastEndPositions, i * 3, rightPos); CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute( finalPositions, leftPos, undefined, back ); CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute(finalPositions, rightPos, front); addNormals(attr, normal, left, front, back, vertexFormat); LR = front / 3; LL = LR - 1; UR = (back - 2) / 3; UL = UR + 1; indices[index++] = UL; indices[index++] = LL; indices[index++] = UR; indices[index++] = UR; indices[index++] = LL; indices[index++] = LR; front += 3; back -= 3; } } attributes.position = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE, componentsPerAttribute: 3, values: finalPositions, }); if (vertexFormat.st) { const st = new Float32Array((size / 3) * 2); let rightSt; let leftSt; let stIndex = 0; if (addEndPositions) { leftCount /= 3; rightCount /= 3; const theta = Math.PI / (endPositionLength + 1); leftSt = 1 / (leftCount - endPositionLength + 1); rightSt = 1 / (rightCount - endPositionLength + 1); let a; const halfEndPos = endPositionLength / 2; for (i = halfEndPos + 1; i < endPositionLength + 1; i++) { // lower left rounded end a = ComponentDatatype.CesiumMath.PI_OVER_TWO + theta * i; st[stIndex++] = rightSt * (1 + Math.cos(a)); st[stIndex++] = 0.5 * (1 + Math.sin(a)); } for (i = 1; i < rightCount - endPositionLength + 1; i++) { // bottom edge st[stIndex++] = i * rightSt; st[stIndex++] = 0; } for (i = endPositionLength; i > halfEndPos; i--) { // lower right rounded end a = ComponentDatatype.CesiumMath.PI_OVER_TWO - i * theta; st[stIndex++] = 1 - rightSt * (1 + Math.cos(a)); st[stIndex++] = 0.5 * (1 + Math.sin(a)); } for (i = halfEndPos; i > 0; i--) { // upper right rounded end a = ComponentDatatype.CesiumMath.PI_OVER_TWO - theta * i; st[stIndex++] = 1 - leftSt * (1 + Math.cos(a)); st[stIndex++] = 0.5 * (1 + Math.sin(a)); } for (i = leftCount - endPositionLength; i > 0; i--) { // top edge st[stIndex++] = i * leftSt; st[stIndex++] = 1; } for (i = 1; i < halfEndPos + 1; i++) { // upper left rounded end a = ComponentDatatype.CesiumMath.PI_OVER_TWO + theta * i; st[stIndex++] = leftSt * (1 + Math.cos(a)); st[stIndex++] = 0.5 * (1 + Math.sin(a)); } } else { leftCount /= 3; rightCount /= 3; leftSt = 1 / (leftCount - 1); rightSt = 1 / (rightCount - 1); for (i = 0; i < rightCount; i++) { // bottom edge st[stIndex++] = i * rightSt; st[stIndex++] = 0; } for (i = leftCount; i > 0; i--) { // top edge st[stIndex++] = (i - 1) * leftSt; st[stIndex++] = 1; } } attributes.st = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: 2, values: st, }); } if (vertexFormat.normal) { attributes.normal = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: 3, values: attr.normals, }); } if (vertexFormat.tangent) { attributes.tangent = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: 3, values: attr.tangents, }); } if (vertexFormat.bitangent) { attributes.bitangent = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: 3, values: attr.bitangents, }); } return { attributes: attributes, indices: indices, }; } function extrudedAttributes(attributes, vertexFormat) { if ( !vertexFormat.normal && !vertexFormat.tangent && !vertexFormat.bitangent && !vertexFormat.st ) { return attributes; } const positions = attributes.position.values; let topNormals; let topBitangents; if (vertexFormat.normal || vertexFormat.bitangent) { topNormals = attributes.normal.values; topBitangents = attributes.bitangent.values; } const size = attributes.position.values.length / 18; const threeSize = size * 3; const twoSize = size * 2; const sixSize = threeSize * 2; let i; if (vertexFormat.normal || vertexFormat.bitangent || vertexFormat.tangent) { const normals = vertexFormat.normal ? new Float32Array(threeSize * 6) : undefined; const tangents = vertexFormat.tangent ? new Float32Array(threeSize * 6) : undefined; const bitangents = vertexFormat.bitangent ? new Float32Array(threeSize * 6) : undefined; let topPosition = cartesian1; let bottomPosition = cartesian2; let previousPosition = cartesian3; let normal = cartesian4; let tangent = cartesian5; let bitangent = cartesian6; let attrIndex = sixSize; for (i = 0; i < threeSize; i += 3) { const attrIndexOffset = attrIndex + sixSize; topPosition = Matrix2.Cartesian3.fromArray(positions, i, topPosition); bottomPosition = Matrix2.Cartesian3.fromArray( positions, i + threeSize, bottomPosition ); previousPosition = Matrix2.Cartesian3.fromArray( positions, (i + 3) % threeSize, previousPosition ); bottomPosition = Matrix2.Cartesian3.subtract( bottomPosition, topPosition, bottomPosition ); previousPosition = Matrix2.Cartesian3.subtract( previousPosition, topPosition, previousPosition ); normal = Matrix2.Cartesian3.normalize( Matrix2.Cartesian3.cross(bottomPosition, previousPosition, normal), normal ); if (vertexFormat.normal) { CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute(normals, normal, attrIndexOffset); CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute( normals, normal, attrIndexOffset + 3 ); CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute(normals, normal, attrIndex); CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute(normals, normal, attrIndex + 3); } if (vertexFormat.tangent || vertexFormat.bitangent) { bitangent = Matrix2.Cartesian3.fromArray(topNormals, i, bitangent); if (vertexFormat.bitangent) { CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute( bitangents, bitangent, attrIndexOffset ); CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute( bitangents, bitangent, attrIndexOffset + 3 ); CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute( bitangents, bitangent, attrIndex ); CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute( bitangents, bitangent, attrIndex + 3 ); } if (vertexFormat.tangent) { tangent = Matrix2.Cartesian3.normalize( Matrix2.Cartesian3.cross(bitangent, normal, tangent), tangent ); CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute( tangents, tangent, attrIndexOffset ); CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute( tangents, tangent, attrIndexOffset + 3 ); CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute(tangents, tangent, attrIndex); CorridorGeometryLibrary.CorridorGeometryLibrary.addAttribute( tangents, tangent, attrIndex + 3 ); } } attrIndex += 6; } if (vertexFormat.normal) { normals.set(topNormals); //top for (i = 0; i < threeSize; i += 3) { //bottom normals normals[i + threeSize] = -topNormals[i]; normals[i + threeSize + 1] = -topNormals[i + 1]; normals[i + threeSize + 2] = -topNormals[i + 2]; } attributes.normal.values = normals; } else { attributes.normal = undefined; } if (vertexFormat.bitangent) { bitangents.set(topBitangents); //top bitangents.set(topBitangents, threeSize); //bottom attributes.bitangent.values = bitangents; } else { attributes.bitangent = undefined; } if (vertexFormat.tangent) { const topTangents = attributes.tangent.values; tangents.set(topTangents); //top tangents.set(topTangents, threeSize); //bottom attributes.tangent.values = tangents; } } if (vertexFormat.st) { const topSt = attributes.st.values; const st = new Float32Array(twoSize * 6); st.set(topSt); //top st.set(topSt, twoSize); //bottom let index = twoSize * 2; for (let j = 0; j < 2; j++) { st[index++] = topSt[0]; st[index++] = topSt[1]; for (i = 2; i < twoSize; i += 2) { const s = topSt[i]; const t = topSt[i + 1]; st[index++] = s; st[index++] = t; st[index++] = s; st[index++] = t; } st[index++] = topSt[0]; st[index++] = topSt[1]; } attributes.st.values = st; } return attributes; } function addWallPositions(positions, index, wallPositions) { wallPositions[index++] = positions[0]; wallPositions[index++] = positions[1]; wallPositions[index++] = positions[2]; for (let i = 3; i < positions.length; i += 3) { const x = positions[i]; const y = positions[i + 1]; const z = positions[i + 2]; wallPositions[index++] = x; wallPositions[index++] = y; wallPositions[index++] = z; wallPositions[index++] = x; wallPositions[index++] = y; wallPositions[index++] = z; } wallPositions[index++] = positions[0]; wallPositions[index++] = positions[1]; wallPositions[index++] = positions[2]; return wallPositions; } function computePositionsExtruded(params, vertexFormat) { const topVertexFormat = new VertexFormat.VertexFormat({ position: vertexFormat.position, normal: vertexFormat.normal || vertexFormat.bitangent || params.shadowVolume, tangent: vertexFormat.tangent, bitangent: vertexFormat.normal || vertexFormat.bitangent, st: vertexFormat.st, }); const ellipsoid = params.ellipsoid; const computedPositions = CorridorGeometryLibrary.CorridorGeometryLibrary.computePositions(params); const attr = combine(computedPositions, topVertexFormat, ellipsoid); const height = params.height; const extrudedHeight = params.extrudedHeight; let attributes = attr.attributes; const indices = attr.indices; let positions = attributes.position.values; let length = positions.length; const newPositions = new Float64Array(length * 6); let extrudedPositions = new Float64Array(length); extrudedPositions.set(positions); let wallPositions = new Float64Array(length * 4); positions = PolygonPipeline.PolygonPipeline.scaleToGeodeticHeight( positions, height, ellipsoid ); wallPositions = addWallPositions(positions, 0, wallPositions); extrudedPositions = PolygonPipeline.PolygonPipeline.scaleToGeodeticHeight( extrudedPositions, extrudedHeight, ellipsoid ); wallPositions = addWallPositions( extrudedPositions, length * 2, wallPositions ); newPositions.set(positions); newPositions.set(extrudedPositions, length); newPositions.set(wallPositions, length * 2); attributes.position.values = newPositions; attributes = extrudedAttributes(attributes, vertexFormat); let i; const size = length / 3; if (params.shadowVolume) { const topNormals = attributes.normal.values; length = topNormals.length; let extrudeNormals = new Float32Array(length * 6); for (i = 0; i < length; i++) { topNormals[i] = -topNormals[i]; } //only get normals for bottom layer that's going to be pushed down extrudeNormals.set(topNormals, length); //bottom face extrudeNormals = addWallPositions(topNormals, length * 4, extrudeNormals); //bottom wall attributes.extrudeDirection = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.FLOAT, componentsPerAttribute: 3, values: extrudeNormals, }); if (!vertexFormat.normal) { attributes.normal = undefined; } } if (defaultValue.defined(params.offsetAttribute)) { let applyOffset = new Uint8Array(size * 6); if (params.offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.TOP) { applyOffset = GeometryOffsetAttribute.arrayFill(applyOffset, 1, 0, size); // top face applyOffset = GeometryOffsetAttribute.arrayFill(applyOffset, 1, size * 2, size * 4); // top wall } else { const applyOffsetValue = params.offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.NONE ? 0 : 1; applyOffset = GeometryOffsetAttribute.arrayFill(applyOffset, applyOffsetValue); } attributes.applyOffset = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE, componentsPerAttribute: 1, values: applyOffset, }); } const iLength = indices.length; const twoSize = size + size; const newIndices = IndexDatatype.IndexDatatype.createTypedArray( newPositions.length / 3, iLength * 2 + twoSize * 3 ); newIndices.set(indices); let index = iLength; for (i = 0; i < iLength; i += 3) { // bottom indices const v0 = indices[i]; const v1 = indices[i + 1]; const v2 = indices[i + 2]; newIndices[index++] = v2 + size; newIndices[index++] = v1 + size; newIndices[index++] = v0 + size; } let UL, LL, UR, LR; for (i = 0; i < twoSize; i += 2) { //wall indices UL = i + twoSize; LL = UL + twoSize; UR = UL + 1; LR = LL + 1; newIndices[index++] = UL; newIndices[index++] = LL; newIndices[index++] = UR; newIndices[index++] = UR; newIndices[index++] = LL; newIndices[index++] = LR; } return { attributes: attributes, indices: newIndices, }; } const scratchCartesian1 = new Matrix2.Cartesian3(); const scratchCartesian2 = new Matrix2.Cartesian3(); const scratchCartographic = new Matrix2.Cartographic(); function computeOffsetPoints( position1, position2, ellipsoid, halfWidth, min, max ) { // Compute direction of offset the point const direction = Matrix2.Cartesian3.subtract( position2, position1, scratchCartesian1 ); Matrix2.Cartesian3.normalize(direction, direction); const normal = ellipsoid.geodeticSurfaceNormal(position1, scratchCartesian2); const offsetDirection = Matrix2.Cartesian3.cross( direction, normal, scratchCartesian1 ); Matrix2.Cartesian3.multiplyByScalar(offsetDirection, halfWidth, offsetDirection); let minLat = min.latitude; let minLon = min.longitude; let maxLat = max.latitude; let maxLon = max.longitude; // Compute 2 offset points Matrix2.Cartesian3.add(position1, offsetDirection, scratchCartesian2); ellipsoid.cartesianToCartographic(scratchCartesian2, scratchCartographic); let lat = scratchCartographic.latitude; let lon = scratchCartographic.longitude; minLat = Math.min(minLat, lat); minLon = Math.min(minLon, lon); maxLat = Math.max(maxLat, lat); maxLon = Math.max(maxLon, lon); Matrix2.Cartesian3.subtract(position1, offsetDirection, scratchCartesian2); ellipsoid.cartesianToCartographic(scratchCartesian2, scratchCartographic); lat = scratchCartographic.latitude; lon = scratchCartographic.longitude; minLat = Math.min(minLat, lat); minLon = Math.min(minLon, lon); maxLat = Math.max(maxLat, lat); maxLon = Math.max(maxLon, lon); min.latitude = minLat; min.longitude = minLon; max.latitude = maxLat; max.longitude = maxLon; } const scratchCartesianOffset = new Matrix2.Cartesian3(); const scratchCartesianEnds = new Matrix2.Cartesian3(); const scratchCartographicMin = new Matrix2.Cartographic(); const scratchCartographicMax = new Matrix2.Cartographic(); function computeRectangle(positions, ellipsoid, width, cornerType, result) { positions = scaleToSurface(positions, ellipsoid); const cleanPositions = arrayRemoveDuplicates.arrayRemoveDuplicates( positions, Matrix2.Cartesian3.equalsEpsilon ); const length = cleanPositions.length; if (length < 2 || width <= 0) { return new Matrix2.Rectangle(); } const halfWidth = width * 0.5; scratchCartographicMin.latitude = Number.POSITIVE_INFINITY; scratchCartographicMin.longitude = Number.POSITIVE_INFINITY; scratchCartographicMax.latitude = Number.NEGATIVE_INFINITY; scratchCartographicMax.longitude = Number.NEGATIVE_INFINITY; let lat, lon; if (cornerType === PolylineVolumeGeometryLibrary.CornerType.ROUNDED) { // Compute start cap const first = cleanPositions[0]; Matrix2.Cartesian3.subtract(first, cleanPositions[1], scratchCartesianOffset); Matrix2.Cartesian3.normalize(scratchCartesianOffset, scratchCartesianOffset); Matrix2.Cartesian3.multiplyByScalar( scratchCartesianOffset, halfWidth, scratchCartesianOffset ); Matrix2.Cartesian3.add(first, scratchCartesianOffset, scratchCartesianEnds); ellipsoid.cartesianToCartographic( scratchCartesianEnds, scratchCartographic ); lat = scratchCartographic.latitude; lon = scratchCartographic.longitude; scratchCartographicMin.latitude = Math.min( scratchCartographicMin.latitude, lat ); scratchCartographicMin.longitude = Math.min( scratchCartographicMin.longitude, lon ); scratchCartographicMax.latitude = Math.max( scratchCartographicMax.latitude, lat ); scratchCartographicMax.longitude = Math.max( scratchCartographicMax.longitude, lon ); } // Compute the rest for (let i = 0; i < length - 1; ++i) { computeOffsetPoints( cleanPositions[i], cleanPositions[i + 1], ellipsoid, halfWidth, scratchCartographicMin, scratchCartographicMax ); } // Compute ending point const last = cleanPositions[length - 1]; Matrix2.Cartesian3.subtract(last, cleanPositions[length - 2], scratchCartesianOffset); Matrix2.Cartesian3.normalize(scratchCartesianOffset, scratchCartesianOffset); Matrix2.Cartesian3.multiplyByScalar( scratchCartesianOffset, halfWidth, scratchCartesianOffset ); Matrix2.Cartesian3.add(last, scratchCartesianOffset, scratchCartesianEnds); computeOffsetPoints( last, scratchCartesianEnds, ellipsoid, halfWidth, scratchCartographicMin, scratchCartographicMax ); if (cornerType === PolylineVolumeGeometryLibrary.CornerType.ROUNDED) { // Compute end cap ellipsoid.cartesianToCartographic( scratchCartesianEnds, scratchCartographic ); lat = scratchCartographic.latitude; lon = scratchCartographic.longitude; scratchCartographicMin.latitude = Math.min( scratchCartographicMin.latitude, lat ); scratchCartographicMin.longitude = Math.min( scratchCartographicMin.longitude, lon ); scratchCartographicMax.latitude = Math.max( scratchCartographicMax.latitude, lat ); scratchCartographicMax.longitude = Math.max( scratchCartographicMax.longitude, lon ); } const rectangle = defaultValue.defined(result) ? result : new Matrix2.Rectangle(); rectangle.north = scratchCartographicMax.latitude; rectangle.south = scratchCartographicMin.latitude; rectangle.east = scratchCartographicMax.longitude; rectangle.west = scratchCartographicMin.longitude; return rectangle; } /** * A description of a corridor. Corridor geometry can be rendered with both {@link Primitive} and {@link GroundPrimitive}. * * @alias CorridorGeometry * @constructor * * @param {Object} options Object with the following properties: * @param {Cartesian3[]} options.positions An array of positions that define the center of the corridor. * @param {Number} options.width The distance between the edges of the corridor in meters. * @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid to be used as a reference. * @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer. * @param {Number} [options.height=0] The distance in meters between the ellipsoid surface and the positions. * @param {Number} [options.extrudedHeight] The distance in meters between the ellipsoid surface and the extruded face. * @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed. * @param {CornerType} [options.cornerType=CornerType.ROUNDED] Determines the style of the corners. * * @see CorridorGeometry.createGeometry * @see Packable * * @demo {@link https://sandcastle.cesium.com/index.html?src=Corridor.html|Cesium Sandcastle Corridor Demo} * * @example * const corridor = new Cesium.CorridorGeometry({ * vertexFormat : Cesium.VertexFormat.POSITION_ONLY, * positions : Cesium.Cartesian3.fromDegreesArray([-72.0, 40.0, -70.0, 35.0]), * width : 100000 * }); */ function CorridorGeometry(options) { options = defaultValue.defaultValue(options, defaultValue.defaultValue.EMPTY_OBJECT); const positions = options.positions; const width = options.width; //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("options.positions", positions); RuntimeError.Check.defined("options.width", width); //>>includeEnd('debug'); const height = defaultValue.defaultValue(options.height, 0.0); const extrudedHeight = defaultValue.defaultValue(options.extrudedHeight, height); this._positions = positions; this._ellipsoid = Matrix2.Ellipsoid.clone( defaultValue.defaultValue(options.ellipsoid, Matrix2.Ellipsoid.WGS84) ); this._vertexFormat = VertexFormat.VertexFormat.clone( defaultValue.defaultValue(options.vertexFormat, VertexFormat.VertexFormat.DEFAULT) ); this._width = width; this._height = Math.max(height, extrudedHeight); this._extrudedHeight = Math.min(height, extrudedHeight); this._cornerType = defaultValue.defaultValue(options.cornerType, PolylineVolumeGeometryLibrary.CornerType.ROUNDED); this._granularity = defaultValue.defaultValue( options.granularity, ComponentDatatype.CesiumMath.RADIANS_PER_DEGREE ); this._shadowVolume = defaultValue.defaultValue(options.shadowVolume, false); this._workerName = "createCorridorGeometry"; this._offsetAttribute = options.offsetAttribute; this._rectangle = undefined; /** * The number of elements used to pack the object into an array. * @type {Number} */ this.packedLength = 1 + positions.length * Matrix2.Cartesian3.packedLength + Matrix2.Ellipsoid.packedLength + VertexFormat.VertexFormat.packedLength + 7; } /** * Stores the provided instance into the provided array. * * @param {CorridorGeometry} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ CorridorGeometry.pack = function (value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("value", value); RuntimeError.Check.defined("array", array); //>>includeEnd('debug'); startingIndex = defaultValue.defaultValue(startingIndex, 0); const positions = value._positions; const length = positions.length; array[startingIndex++] = length; for (let i = 0; i < length; ++i, startingIndex += Matrix2.Cartesian3.packedLength) { Matrix2.Cartesian3.pack(positions[i], array, startingIndex); } Matrix2.Ellipsoid.pack(value._ellipsoid, array, startingIndex); startingIndex += Matrix2.Ellipsoid.packedLength; VertexFormat.VertexFormat.pack(value._vertexFormat, array, startingIndex); startingIndex += VertexFormat.VertexFormat.packedLength; array[startingIndex++] = value._width; array[startingIndex++] = value._height; array[startingIndex++] = value._extrudedHeight; array[startingIndex++] = value._cornerType; array[startingIndex++] = value._granularity; array[startingIndex++] = value._shadowVolume ? 1.0 : 0.0; array[startingIndex] = defaultValue.defaultValue(value._offsetAttribute, -1); return array; }; const scratchEllipsoid = Matrix2.Ellipsoid.clone(Matrix2.Ellipsoid.UNIT_SPHERE); const scratchVertexFormat = new VertexFormat.VertexFormat(); const scratchOptions = { positions: undefined, ellipsoid: scratchEllipsoid, vertexFormat: scratchVertexFormat, width: undefined, height: undefined, extrudedHeight: undefined, cornerType: undefined, granularity: undefined, shadowVolume: undefined, offsetAttribute: undefined, }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {CorridorGeometry} [result] The object into which to store the result. * @returns {CorridorGeometry} The modified result parameter or a new CorridorGeometry instance if one was not provided. */ CorridorGeometry.unpack = function (array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("array", array); //>>includeEnd('debug'); startingIndex = defaultValue.defaultValue(startingIndex, 0); const length = array[startingIndex++]; const positions = new Array(length); for (let i = 0; i < length; ++i, startingIndex += Matrix2.Cartesian3.packedLength) { positions[i] = Matrix2.Cartesian3.unpack(array, startingIndex); } const ellipsoid = Matrix2.Ellipsoid.unpack(array, startingIndex, scratchEllipsoid); startingIndex += Matrix2.Ellipsoid.packedLength; const vertexFormat = VertexFormat.VertexFormat.unpack( array, startingIndex, scratchVertexFormat ); startingIndex += VertexFormat.VertexFormat.packedLength; const width = array[startingIndex++]; const height = array[startingIndex++]; const extrudedHeight = array[startingIndex++]; const cornerType = array[startingIndex++]; const granularity = array[startingIndex++]; const shadowVolume = array[startingIndex++] === 1.0; const offsetAttribute = array[startingIndex]; if (!defaultValue.defined(result)) { scratchOptions.positions = positions; scratchOptions.width = width; scratchOptions.height = height; scratchOptions.extrudedHeight = extrudedHeight; scratchOptions.cornerType = cornerType; scratchOptions.granularity = granularity; scratchOptions.shadowVolume = shadowVolume; scratchOptions.offsetAttribute = offsetAttribute === -1 ? undefined : offsetAttribute; return new CorridorGeometry(scratchOptions); } result._positions = positions; result._ellipsoid = Matrix2.Ellipsoid.clone(ellipsoid, result._ellipsoid); result._vertexFormat = VertexFormat.VertexFormat.clone(vertexFormat, result._vertexFormat); result._width = width; result._height = height; result._extrudedHeight = extrudedHeight; result._cornerType = cornerType; result._granularity = granularity; result._shadowVolume = shadowVolume; result._offsetAttribute = offsetAttribute === -1 ? undefined : offsetAttribute; return result; }; /** * Computes the bounding rectangle given the provided options * * @param {Object} options Object with the following properties: * @param {Cartesian3[]} options.positions An array of positions that define the center of the corridor. * @param {Number} options.width The distance between the edges of the corridor in meters. * @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid to be used as a reference. * @param {CornerType} [options.cornerType=CornerType.ROUNDED] Determines the style of the corners. * @param {Rectangle} [result] An object in which to store the result. * * @returns {Rectangle} The result rectangle. */ CorridorGeometry.computeRectangle = function (options, result) { options = defaultValue.defaultValue(options, defaultValue.defaultValue.EMPTY_OBJECT); const positions = options.positions; const width = options.width; //>>includeStart('debug', pragmas.debug); RuntimeError.Check.defined("options.positions", positions); RuntimeError.Check.defined("options.width", width); //>>includeEnd('debug'); const ellipsoid = defaultValue.defaultValue(options.ellipsoid, Matrix2.Ellipsoid.WGS84); const cornerType = defaultValue.defaultValue(options.cornerType, PolylineVolumeGeometryLibrary.CornerType.ROUNDED); return computeRectangle(positions, ellipsoid, width, cornerType, result); }; /** * Computes the geometric representation of a corridor, including its vertices, indices, and a bounding sphere. * * @param {CorridorGeometry} corridorGeometry A description of the corridor. * @returns {Geometry|undefined} The computed vertices and indices. */ CorridorGeometry.createGeometry = function (corridorGeometry) { let positions = corridorGeometry._positions; const width = corridorGeometry._width; const ellipsoid = corridorGeometry._ellipsoid; positions = scaleToSurface(positions, ellipsoid); const cleanPositions = arrayRemoveDuplicates.arrayRemoveDuplicates( positions, Matrix2.Cartesian3.equalsEpsilon ); if (cleanPositions.length < 2 || width <= 0) { return; } const height = corridorGeometry._height; const extrudedHeight = corridorGeometry._extrudedHeight; const extrude = !ComponentDatatype.CesiumMath.equalsEpsilon( height, extrudedHeight, 0, ComponentDatatype.CesiumMath.EPSILON2 ); const vertexFormat = corridorGeometry._vertexFormat; const params = { ellipsoid: ellipsoid, positions: cleanPositions, width: width, cornerType: corridorGeometry._cornerType, granularity: corridorGeometry._granularity, saveAttributes: true, }; let attr; if (extrude) { params.height = height; params.extrudedHeight = extrudedHeight; params.shadowVolume = corridorGeometry._shadowVolume; params.offsetAttribute = corridorGeometry._offsetAttribute; attr = computePositionsExtruded(params, vertexFormat); } else { const computedPositions = CorridorGeometryLibrary.CorridorGeometryLibrary.computePositions(params); attr = combine(computedPositions, vertexFormat, ellipsoid); attr.attributes.position.values = PolygonPipeline.PolygonPipeline.scaleToGeodeticHeight( attr.attributes.position.values, height, ellipsoid ); if (defaultValue.defined(corridorGeometry._offsetAttribute)) { const applyOffsetValue = corridorGeometry._offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.NONE ? 0 : 1; const length = attr.attributes.position.values.length; const applyOffset = new Uint8Array(length / 3); GeometryOffsetAttribute.arrayFill(applyOffset, applyOffsetValue); attr.attributes.applyOffset = new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE, componentsPerAttribute: 1, values: applyOffset, }); } } const attributes = attr.attributes; const boundingSphere = Transforms.BoundingSphere.fromVertices( attributes.position.values, undefined, 3 ); if (!vertexFormat.position) { attr.attributes.position.values = undefined; } return new GeometryAttribute.Geometry({ attributes: attributes, indices: attr.indices, primitiveType: GeometryAttribute.PrimitiveType.TRIANGLES, boundingSphere: boundingSphere, offsetAttribute: corridorGeometry._offsetAttribute, }); }; /** * @private */ CorridorGeometry.createShadowVolume = function ( corridorGeometry, minHeightFunc, maxHeightFunc ) { const granularity = corridorGeometry._granularity; const ellipsoid = corridorGeometry._ellipsoid; const minHeight = minHeightFunc(granularity, ellipsoid); const maxHeight = maxHeightFunc(granularity, ellipsoid); return new CorridorGeometry({ positions: corridorGeometry._positions, width: corridorGeometry._width, cornerType: corridorGeometry._cornerType, ellipsoid: ellipsoid, granularity: granularity, extrudedHeight: minHeight, height: maxHeight, vertexFormat: VertexFormat.VertexFormat.POSITION_ONLY, shadowVolume: true, }); }; Object.defineProperties(CorridorGeometry.prototype, { /** * @private */ rectangle: { get: function () { if (!defaultValue.defined(this._rectangle)) { this._rectangle = computeRectangle( this._positions, this._ellipsoid, this._width, this._cornerType ); } return this._rectangle; }, }, /** * For remapping texture coordinates when rendering CorridorGeometries as GroundPrimitives. * * Corridors don't support stRotation, * so just return the corners of the original system. * @private */ textureCoordinateRotationPoints: { get: function () { return [0, 0, 0, 1, 1, 0]; }, }, }); function createCorridorGeometry(corridorGeometry, offset) { if (defaultValue.defined(offset)) { corridorGeometry = CorridorGeometry.unpack(corridorGeometry, offset); } corridorGeometry._ellipsoid = Matrix2.Ellipsoid.clone(corridorGeometry._ellipsoid); return CorridorGeometry.createGeometry(corridorGeometry); } return createCorridorGeometry; }));