PowerFittingALG.java 9.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322
  1. package com.gyee.runeconomy.model;
  2. import com.gyee.runeconomy.service.WindDirection.Point;
  3. import java.math.BigDecimal;
  4. import java.util.*;
  5. /**
  6. * 功率曲线拟合算法
  7. * 最小二乘法
  8. */
  9. public class PowerFittingALG {
  10. /**
  11. * 功率曲线拟合
  12. *
  13. * @param arrX 风速数组
  14. * @param arrY 功率数据
  15. * @param length 点个数
  16. * @param dimension 维度
  17. * @param scale 精度 0.1 0.01
  18. * @return
  19. */
  20. public static List<Point> buildLine(double[] arrX, double[] arrY, int length, int dimension, double scale) {
  21. List<Point> points = new ArrayList<>();
  22. if (arrX.length != arrY.length || arrX.length < 3) {
  23. return points;
  24. }
  25. double minValue = arrY[0];
  26. double maxValue = arrY[arrY.length - 1];
  27. double min = 0;
  28. double max = 0;
  29. double[] coefficient = MultiLine(arrX, arrY, length, dimension);
  30. for (double i = arrX[0]; i <= arrX[arrX.length - 1]; i += scale) {
  31. Point point = new Point();
  32. point.setX(i);
  33. for (int j = 0; j < coefficient.length; j++) {
  34. if (j == 0) {
  35. point.setY(coefficient[j] * Math.pow(point.getX(), j));
  36. } else {
  37. double temp = coefficient[j] * Math.pow(point.getX(), j);
  38. point.setY(point.getY() + temp);
  39. }
  40. }
  41. if (point.getY() < minValue) {
  42. point.setY(minValue);
  43. }
  44. if (point.getY() > maxValue) {
  45. point.setY(maxValue);
  46. }
  47. if (point.getY() < min) {
  48. min = point.getY();
  49. }
  50. if (point.getY() > max) {
  51. max = point.getY();
  52. }
  53. points.add(point);
  54. }
  55. Builder(points, min, max);
  56. return points;
  57. }
  58. private static void Builder(List<Point> points, double min, double max) {
  59. boolean b = false;
  60. for (int i = 0; i < points.size(); i++) {
  61. if (b) {
  62. points.get(i).setY(max);
  63. } else {
  64. if (max == points.get(i).getY()) {
  65. b = true;
  66. }
  67. }
  68. }
  69. for (int i = points.size() - 1; i > -1; i--) {
  70. if (!b) {
  71. points.get(i).setY(min);
  72. } else {
  73. if (min == points.get(i).getY()) {
  74. b = false;
  75. }
  76. }
  77. }
  78. }
  79. ///<summary>
  80. ///用最小二乘法拟合二元多次曲线
  81. ///</summary>
  82. ///<param name="arrX">已知点的x坐标集合</param>
  83. ///<param name="arrY">已知点的y坐标集合</param>
  84. ///<param name="length">已知点的个数</param>
  85. ///<param name="dimension">方程的最高次数</param>
  86. //二元多次线性方程拟合曲线
  87. private static double[] MultiLine(double[] arrX, double[] arrY, int length, int dimension) {
  88. int n = dimension + 1; //dimension次方程需要求 dimension+1个 系数
  89. double[][] Guass = new double[n][n + 1]; //高斯矩阵 例如:y=a0+a1*x+a2*x*x
  90. for (int i = 0; i < n; i++) {
  91. int j;
  92. for (j = 0; j < n; j++) {
  93. Guass[i][j] = SumArr(arrX, j + i, length);
  94. }
  95. Guass[i][j] = SumArr(arrX, i, arrY, 1, length);
  96. }
  97. return ComputGauss(Guass, n);
  98. }
  99. //求数组的元素的n次方的和
  100. private static double SumArr(double[] arr, int n, int length) {
  101. double s = 0;
  102. for (int i = 0; i < length; i++) {
  103. if (arr[i] != 0 || n != 0)
  104. s = s + Math.pow(arr[i], n);
  105. else
  106. s = s + 1;
  107. }
  108. return s;
  109. }
  110. private static double SumArr(double[] arr1, int n1, double[] arr2, int n2, int length) {
  111. double s = 0;
  112. for (int i = 0; i < length; i++) {
  113. if ((arr1[i] != 0 || n1 != 0) && (arr2[i] != 0 || n2 != 0))
  114. s = s + Math.pow(arr1[i], n1) * Math.pow(arr2[i], n2);
  115. else
  116. s = s + 1;
  117. }
  118. return s;
  119. }
  120. private static double[] ComputGauss(double[][] Guass, int n) {
  121. int i, j;
  122. int k, m;
  123. double temp;
  124. double max;
  125. double s;
  126. double[] x = new double[n];
  127. for (i = 0; i < n; i++) x[i] = 0.0;//初始化
  128. for (j = 0; j < n; j++) {
  129. max = 0;
  130. k = j;
  131. for (i = j; i < n; i++) {
  132. if (Math.abs(Guass[i][j]) > max) {
  133. max = Guass[i][j];
  134. k = i;
  135. }
  136. }
  137. if (k != j) {
  138. for (m = j; m < n + 1; m++) {
  139. temp = Guass[j][m];
  140. Guass[j][m] = Guass[k][m];
  141. Guass[k][m] = temp;
  142. }
  143. }
  144. if (0 == max) {
  145. // "此线性方程为奇异线性方程"
  146. return x;
  147. }
  148. for (i = j + 1; i < n; i++) {
  149. s = Guass[i][j];
  150. for (m = j; m < n + 1; m++) {
  151. Guass[i][m] = Guass[i][m] - Guass[j][m] * s / (Guass[j][j]);
  152. }
  153. }
  154. }//结束for (j=0;j<n;j++)
  155. for (i = n - 1; i >= 0; i--) {
  156. s = 0;
  157. for (j = i + 1; j < n; j++) {
  158. s = s + Guass[i][j] * x[j];
  159. }
  160. x[i] = (Guass[i][n] - s) / Guass[i][i];
  161. }
  162. return x;
  163. }//返回值是函数的系数
  164. /**
  165. * 推力系数 CP 值
  166. * @param sweptarea 扫风面积
  167. * @param line
  168. * @return
  169. */
  170. public static LineCurveFitting buildCp(Double sweptarea, LineCurveFitting line){
  171. List<Point> cpValue = new ArrayList<>();
  172. double kqmd = 1.225; //空气密度
  173. double max = 0;
  174. double cpAvg = 0;
  175. double sum1 = 0;
  176. for (int i = 0; i < line.getYLines().size(); i++)
  177. {
  178. Point point = line.getYLines().get(i);
  179. double speed = point.getX();
  180. double power = point.getY();
  181. double k = 0.5 * kqmd * Math.pow(speed, 3) * sweptarea;
  182. double result = 0;
  183. if (k != 0)
  184. result = power / k * 1000;
  185. //s5.Points.AddXY(speed, result);
  186. Point cppoint = new Point();
  187. cppoint.setX(speed);
  188. cppoint.setY(result);
  189. cpValue.add(cppoint);
  190. if (max < result)
  191. {
  192. max = result;
  193. }
  194. if (result > 0 && speed >= 3 && speed <= 25)
  195. {
  196. cpAvg += result;
  197. sum1++;
  198. }
  199. }
  200. if(sum1>0)
  201. cpAvg /= sum1;
  202. line.setCpValue(cpValue);
  203. line.setCpAvg(new BigDecimal(cpAvg).setScale(2, BigDecimal.ROUND_CEILING).doubleValue());
  204. return line;
  205. }
  206. /**
  207. * 曲线偏差率
  208. * @param points1 风速功率数组
  209. * @param points2
  210. * @param maxp
  211. * @return
  212. */
  213. public static double curveDeviationRatio(List<Point> points1, List<Point> points2, double maxp) {
  214. double result = -0;
  215. double pc = 0;
  216. if (points1 != null && points1.size() > 0 && points2 != null && points2.size() > 0)
  217. {
  218. double count = 0;
  219. double sum = 0;
  220. for (Point point : points1){
  221. Optional<Point> p = points2.stream().filter(it -> it.getX() == point.getX()).findFirst();
  222. if (p.isPresent()){
  223. sum += Math.pow(point.getY() - p.get().getY(), 2);
  224. count ++;
  225. pc += point.getY() - p.get().getY();
  226. }
  227. }
  228. sum = Math.sqrt(sum);
  229. count = Math.sqrt(count);
  230. maxp = maxp * count;
  231. if (maxp != 0)
  232. result = sum / maxp * 100;
  233. if (pc < 0)
  234. result = 0 - result;
  235. }
  236. return result;
  237. }
  238. /**
  239. * 曲线偏差率 正负偏差
  240. * @param points1 风速功率数组
  241. * @param points2 风速功率数组(保证功率)
  242. * @param maxp 区间内的最大保证功率
  243. * @param mins 最小风速
  244. * @param maxs 最大风速
  245. * @return
  246. */
  247. public static double curveDeviationRatio2(List<Point> points1, List<Point> points2, double maxp, double mins, double maxs) {
  248. double result = -0;
  249. double pc = 0;
  250. if (points1 != null && points1.size() > 0 && points2 != null && points2.size() > 0)
  251. {
  252. double count = 0;
  253. double sum = 0;
  254. for (Point point : points1){
  255. Optional<Point> p = points2.stream().filter(it -> it.getX() == point.getX()).findFirst();
  256. if (p.isPresent() && p.get().getX() >= mins && p.get().getX() < maxs){
  257. sum += Math.pow(point.getY() - p.get().getY(), 2);
  258. count ++;
  259. pc += point.getY() - p.get().getY();
  260. }
  261. }
  262. sum = Math.sqrt(sum);
  263. count = Math.sqrt(count);
  264. maxp = maxp * count;
  265. if (maxp != 0)
  266. result = sum / maxp * 100;
  267. if (pc < 0)
  268. result = 0 - result;
  269. }
  270. return result;
  271. }
  272. }