|
@@ -1,5 +1,6 @@
|
|
|
package com.gyee.runeconomy.service.auto.impl;
|
|
|
|
|
|
+import com.baomidou.mybatisplus.core.conditions.query.QueryWrapper;
|
|
|
import com.baomidou.mybatisplus.core.toolkit.StringUtils;
|
|
|
import com.gyee.runeconomy.config.GyeeConfig;
|
|
|
import com.gyee.runeconomy.dto.FiveLoss.AnnotationTool;
|
|
@@ -15,13 +16,11 @@ import com.gyee.runeconomy.model.PowerProcessALG;
|
|
|
import com.gyee.runeconomy.model.auto.ProBasicEquipmentPoint;
|
|
|
import com.gyee.runeconomy.model.auto.ProBasicModelPower;
|
|
|
import com.gyee.runeconomy.model.auto.ProEconPowerFittingAnalySis;
|
|
|
-import com.gyee.runeconomy.model.vo.NewDataFittingVo;
|
|
|
import com.gyee.runeconomy.model.vo.PointVo;
|
|
|
import com.gyee.runeconomy.service.DBSCANPointALG;
|
|
|
import com.gyee.runeconomy.service.DataScanService;
|
|
|
import com.gyee.runeconomy.service.WindDirection.Point;
|
|
|
import com.gyee.runeconomy.util.FileUtil;
|
|
|
-import com.gyee.runeconomy.util.SnowFlakeUtil;
|
|
|
import com.gyee.runeconomy.util.realtimesource.feign.RemoteServiceBuilder;
|
|
|
import com.gyee.runeconomy.util.realtimesource.feign.TsDoubleData;
|
|
|
import lombok.extern.slf4j.Slf4j;
|
|
@@ -30,6 +29,7 @@ import org.springframework.beans.factory.annotation.Autowired;
|
|
|
import org.springframework.stereotype.Service;
|
|
|
|
|
|
import javax.annotation.Resource;
|
|
|
+import java.io.File;
|
|
|
import java.text.DecimalFormat;
|
|
|
import java.text.SimpleDateFormat;
|
|
|
import java.util.*;
|
|
@@ -71,16 +71,16 @@ public class NewDataFittingService {
|
|
|
/**
|
|
|
* 数据准备拟合
|
|
|
*
|
|
|
- * @param vo
|
|
|
+ * @param
|
|
|
* @return
|
|
|
*/
|
|
|
- public ProEconPowerFittingAnalySis newDataFitting(NewDataFittingVo vo) {
|
|
|
+ public ProEconPowerFittingAnalySis newDataFitting(String station,String wtId,Long st,Long et,Integer interval,Boolean isbw,Boolean isfbw,Boolean isfhl,Boolean istj,Boolean isglpc,double maxp,double maxs,double mins,double minp,Integer mode,Integer dimension) {
|
|
|
prepareMap = new HashMap<>();
|
|
|
processMap = new HashMap<>();
|
|
|
fittingMap = new HashMap<>();
|
|
|
|
|
|
//1.数据获取
|
|
|
- List<String> wtIds = Arrays.asList(vo.getWtIds().split(","));
|
|
|
+ List<String> wtIds = Arrays.asList(wtId.split(","));
|
|
|
// deleteDir(config.getFilePathPrepare());
|
|
|
for (int k = 0; k < wtIds.size(); k++) {
|
|
|
String wt = wtIds.get(k);
|
|
@@ -96,7 +96,7 @@ public class NewDataFittingService {
|
|
|
ProBasicEquipmentPoint point = collect.get(points.get(i)).get(0);
|
|
|
if (point == null) continue;
|
|
|
log.info("测点:" + point.getId() + "----" + point.getName());
|
|
|
- List<TsDoubleData> data = remoteService.adapterfd().getHistorySnap(point.getNemCode(), vo.getSt(), vo.getEt(), vo.getInterval());
|
|
|
+ List<TsDoubleData> data = remoteService.adapterfd().getHistorySnap(point.getNemCode(), st, et, interval);
|
|
|
// List<TsDoubleData> data = edosUtil.getHistorySnap(point.getNemCode(), vo.getSt(), vo.getEt(), vo.getInterval());
|
|
|
// List<PointData> data = edosUtil.getHistoryDatasSnap(point.getNemCode(), vo.getSt(), vo.getEt(), vo.getInterval());
|
|
|
if (data == null || data.size() == 0)
|
|
@@ -107,26 +107,46 @@ public class NewDataFittingService {
|
|
|
if (result.size() != points.size())
|
|
|
continue;
|
|
|
|
|
|
+ SimpleDateFormat sdf = new SimpleDateFormat("yyyy年MM月dd日");
|
|
|
String content = prepareAssemble(result);
|
|
|
// 处理的数据保存在本地
|
|
|
String wtCode = CacheContext.wtmap.get(wt).getId();
|
|
|
String wtCode2 = CacheContext.wtmap.get(wt).getNemCode();
|
|
|
- String fileName = config.getFilePathPrepare() + vo.getStation() + "_" + wtCode + "_" + System.currentTimeMillis() / 1000 + ".csv";
|
|
|
+// String fileName = config.getFilePathPrepare() + station + "_" + wtCode + "_" + System.currentTimeMillis() / 1000 + ".csv";
|
|
|
+ String fileName = config.getFilePathPrepare() + station + "_" + wtCode + "_" + sdf.format(new Date(st)) + "-" + sdf.format(new Date(et)) + ".csv";
|
|
|
+
|
|
|
+ // 创建 File 对象
|
|
|
+ File file = new File(fileName);
|
|
|
+ // 检查文件是否存在
|
|
|
+ if (file.exists()) {
|
|
|
+ // 尝试删除文件
|
|
|
+ boolean isDeleted = file.delete();
|
|
|
+ if (isDeleted) {
|
|
|
+ System.out.println("文件删除成功: " + fileName);
|
|
|
+ } else {
|
|
|
+ System.out.println("文件删除失败: " + fileName);
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ System.out.println("文件不存在: " + fileName);
|
|
|
+ }
|
|
|
+
|
|
|
boolean flag = FileUtil.writeFile(fileName, content);
|
|
|
|
|
|
if (flag) { // TODO 保存数据库
|
|
|
ProEconPowerFittingAnalySis obj = new ProEconPowerFittingAnalySis();
|
|
|
- obj.setStation(vo.getStation());
|
|
|
- obj.setStationcn(CacheContext.wtstandardmap.get(vo.getStation()));
|
|
|
+ obj.setStation(station);
|
|
|
+ obj.setStationcn(CacheContext.wtstandardmap.get(station));
|
|
|
obj.setWindturbineId(wt);
|
|
|
obj.setCode(wtCode2);
|
|
|
// obj.setTime(DateUtil.format(vo.getSt(), "yyyy年MM月dd日") + "-" + DateUtil.format(vo.getEt(), "yyyy年MM月dd日"));
|
|
|
- SimpleDateFormat sdf = new SimpleDateFormat("yyyy年MM月dd日");
|
|
|
- obj.setTime(sdf.format(new Date(vo.getSt())) + "-" + sdf.format(new Date(vo.getEt())));
|
|
|
- obj.setInterval(vo.getInterval().toString());
|
|
|
+
|
|
|
+ obj.setTime(sdf.format(new Date(st)) + "-" + sdf.format(new Date(et)));
|
|
|
+ obj.setInterval(String.valueOf(interval));
|
|
|
obj.setPath(fileName);
|
|
|
obj.setType("prepare");
|
|
|
- obj.setInterp(vo.getInterval());
|
|
|
+ obj.setInterp(interval);
|
|
|
+
|
|
|
+ proEconPowerFittingAnalySisService.delete(obj.getTime(), fileName);
|
|
|
proEconPowerFittingAnalySisService.saveOrUpdate(obj);
|
|
|
prepareMap.put(obj.getId(), fileName);//保存拿到的数据
|
|
|
}
|
|
@@ -155,24 +175,52 @@ public class NewDataFittingService {
|
|
|
List<ProBasicModelPower> modelPowerList = CacheContext.modelPowerDetailNewMap.get(CacheContext.wtmap.get(obj.getWindturbineId()).getModelId());
|
|
|
Map<Double, Double> modelPowerMap = modelPowerList.stream().collect(Collectors.toMap(ProBasicModelPower::getSpeed, ProBasicModelPower::getEnsurePower));
|
|
|
/** 数据预处理 **/
|
|
|
- List<PowerPointData> data = PowerProcessALG.dataProcess(eis, modelPowerMap, vo.getMaxs(), vo.getMins(), vo.getMaxp(), vo.getMinp(), vo.getIsfbw(), vo.getIsfhl(), vo.getIsbw(), vo.getIstj(), vo.getIsglpc(), vo.getIsqfh(), vo.getQfhdj());
|
|
|
+ Boolean qfh = true;
|
|
|
+ Integer qfhdj = 2;
|
|
|
+ List<PowerPointData> data = PowerProcessALG.dataProcess(eis, modelPowerMap, maxs, mins, maxp, minp, isfbw, isfhl, isbw, istj, isglpc, qfh, qfhdj);
|
|
|
/** 静风频率 **/
|
|
|
List<Double> ls = WindDirectionALG.frequency(data.stream().map(PowerPointData::getSpeed).collect(Collectors.toList()), 3);
|
|
|
double frequency = ls.get(0);
|
|
|
double speed = ls.get(1);
|
|
|
|
|
|
String content = processAssemble(data);
|
|
|
- String fileName = config.getFilePathProcess() + vo.getStation() + "_" + obj.getWindturbineId() + "_" + SnowFlakeUtil.generateIdL() / 100000 + ".csv";
|
|
|
- boolean flag = FileUtil.writeFile(fileName, content);
|
|
|
+// String fileName = config.getFilePathProcess() + station + "_" + obj.getWindturbineId() + "_" + SnowFlakeUtil.generateIdL() / 100000 + ".csv";
|
|
|
+ String fileName = config.getFilePathProcess() + station + "_" + obj.getWindturbineId() + "_" + obj.getTime() + ".csv";
|
|
|
+
|
|
|
+ // 创建 File 对象
|
|
|
+ File file = new File(fileName);
|
|
|
+ // 检查文件是否存在
|
|
|
+ if (file.exists()) {
|
|
|
+ // 尝试删除文件
|
|
|
+ boolean isDeleted = file.delete();
|
|
|
+ if (isDeleted) {
|
|
|
+ System.out.println("文件删除成功: " + fileName);
|
|
|
+ } else {
|
|
|
+ System.out.println("文件删除失败: " + fileName);
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ System.out.println("文件不存在: " + fileName);
|
|
|
+ }
|
|
|
+
|
|
|
|
|
|
+ boolean flag = FileUtil.writeFile(fileName, content);
|
|
|
+ ProEconPowerFittingAnalySis obj1 = new ProEconPowerFittingAnalySis();
|
|
|
if (flag) { // TODO 保存数据库
|
|
|
// obj.setId(null);
|
|
|
- obj.setPath(fileName);
|
|
|
- obj.setFrequency(frequency);
|
|
|
- obj.setSpeedavg(speed);
|
|
|
- obj.setType(DATA_PROCESS);
|
|
|
- proEconPowerFittingAnalySisService.saveOrUpdate(obj);
|
|
|
- processMap.put(obj.getId(), fileName);//保存预处理的的数据
|
|
|
+ obj1.setStation(station);
|
|
|
+ obj1.setStationcn(CacheContext.wtstandardmap.get(station));
|
|
|
+ obj1.setWindturbineId(obj.getWindturbineId());
|
|
|
+ obj1.setCode(obj.getCode());
|
|
|
+ obj1.setTime(obj.getTime());
|
|
|
+ obj1.setPath(fileName);
|
|
|
+ obj1.setFrequency(frequency);
|
|
|
+ obj1.setSpeedavg(speed);
|
|
|
+ obj1.setInterval(obj.getInterval());
|
|
|
+ obj1.setType(DATA_PROCESS);
|
|
|
+
|
|
|
+ proEconPowerFittingAnalySisService.delete(obj1.getTime(), fileName);
|
|
|
+ proEconPowerFittingAnalySisService.saveOrUpdate(obj1);
|
|
|
+ processMap.put(obj1.getId(), fileName);//保存预处理的的数据
|
|
|
}
|
|
|
|
|
|
System.out.println("功率曲线拟合数据预处理完成:" + obj.getWindturbineId());
|
|
@@ -184,7 +232,7 @@ public class NewDataFittingService {
|
|
|
|
|
|
AtomicReference<ProEconPowerFittingAnalySis> object = new AtomicReference<>();
|
|
|
// deleteDir(config.getFilePathFitting());
|
|
|
- if (vo.getMode() == 0) { //单台拟合
|
|
|
+ if (mode == 0) { //单台拟合
|
|
|
for (String processkey : processMap.keySet()) {
|
|
|
List<ProEconPowerFittingAnalySis> list = proEconPowerFittingAnalySisService.selectListByIds(processkey);
|
|
|
List<Double> arraySpeed = new ArrayList<>();
|
|
@@ -193,14 +241,14 @@ public class NewDataFittingService {
|
|
|
// String content = processAssemble(dataFilter);
|
|
|
// String[] lines = content.split("\n");
|
|
|
// List<String> line = new ArrayList<>(Arrays.asList(lines));
|
|
|
- csvParse(line, arraySpeed, arrayPower, vo.getMins(), vo.getMaxs(), vo.getMinp(), vo.getMaxp());
|
|
|
+ csvParse(line, arraySpeed, arrayPower, mins, maxs, minp, maxp);
|
|
|
List<ProBasicModelPower> mp = CacheContext.modelPowerDetailNewMap.get(CacheContext.wtmap.get(list.get(0).getWindturbineId()).getModelId());
|
|
|
Double maxP = mp.stream().map(ProBasicModelPower::getEnsurePower).max(Comparator.comparing(Double::doubleValue)).get();
|
|
|
- object.set(fittingMode(list, maxP, arraySpeed, arrayPower, vo.getDimension(), vo.getMode()));
|
|
|
+ object.set(fittingMode(list, maxP, arraySpeed, arrayPower, dimension, mode));
|
|
|
|
|
|
}
|
|
|
}
|
|
|
- if (vo.getMode() == 1) { //合并拟合
|
|
|
+ if (mode == 1) { //合并拟合
|
|
|
|
|
|
AtomicReference<Double> maxP = new AtomicReference<>(0.0);
|
|
|
List<Double> arraySpeed = new ArrayList<>();
|
|
@@ -213,16 +261,16 @@ public class NewDataFittingService {
|
|
|
// String content = processAssemble(dataFilter);
|
|
|
// String[] lines = content.split("\n");
|
|
|
// List<String> line = new ArrayList<>(Arrays.asList(lines));
|
|
|
- csvParse(line, arraySpeed, arrayPower, vo.getMins(), vo.getMaxs(), vo.getMinp(), vo.getMaxp());
|
|
|
+ csvParse(line, arraySpeed, arrayPower, mins, maxs, minp, maxp);
|
|
|
List<ProBasicModelPower> mp = CacheContext.modelPowerDetailNewMap.get(CacheContext.wtmap.get(fittingAnalySis.getWindturbineId()).getModelId());
|
|
|
Double maxPower = mp.stream().map(ProBasicModelPower::getEnsurePower).max(Comparator.comparing(Double::doubleValue)).get();
|
|
|
if (maxPower > maxP.get()) maxP.set(maxPower);
|
|
|
}
|
|
|
List<ProEconPowerFittingAnalySis> list = proEconPowerFittingAnalySisService.selectListByIds(ids.toString());
|
|
|
|
|
|
- object.set(fittingMode(list, maxP.get(), arraySpeed, arrayPower, vo.getDimension(), vo.getMode()));
|
|
|
+ object.set(fittingMode(list, maxP.get(), arraySpeed, arrayPower, dimension, mode));
|
|
|
}
|
|
|
- if (vo.getMode() == 2) {
|
|
|
+ if (mode == 2) {
|
|
|
//同名拟合(暂时不支持)
|
|
|
}
|
|
|
fittingMap.put(object.get().getId(), object.get().getPath());
|
|
@@ -411,6 +459,14 @@ public class NewDataFittingService {
|
|
|
return sb;
|
|
|
}
|
|
|
|
|
|
+ private StringBuilder setTitleFitting() {
|
|
|
+ StringBuilder sb = new StringBuilder();
|
|
|
+ val list = AnnotationTool.getFixedVoList(PowerFittingData.class);
|
|
|
+ String columnName = list.stream().filter(f -> f.getRemark().equals("1")).map(FixedVo::getDes).collect(Collectors.joining(","));
|
|
|
+ sb.append(columnName).append("\n");
|
|
|
+ return sb;
|
|
|
+ }
|
|
|
+
|
|
|
|
|
|
/**
|
|
|
* 读取csv数据 转换成对象数组
|
|
@@ -461,28 +517,53 @@ public class NewDataFittingService {
|
|
|
String fileName = null;
|
|
|
if (mode == 0) {
|
|
|
processId = obj.getId();
|
|
|
- fileName = config.getFilePathFitting() + obj.getStation() + "_" + obj.getCode() + "_" + SnowFlakeUtil.generateIdL() / 100000 + ".csv";
|
|
|
+// fileName = config.getFilePathFitting() + obj.getStation() + "_" + obj.getCode() + "_" + SnowFlakeUtil.generateIdL() / 100000 + ".csv";
|
|
|
+ fileName = config.getFilePathFitting() + obj.getStation() + "_" + obj.getCode() + "_" + obj.getTime() + ".csv";
|
|
|
}
|
|
|
if (mode == 1) {
|
|
|
processId = list.stream().map(d -> d.getId()).collect(Collectors.joining(","));
|
|
|
- fileName = config.getFilePathFitting() + obj.getStation() + "_merge" + "_" + SnowFlakeUtil.generateIdL() / 100000 + ".csv";
|
|
|
+ fileName = config.getFilePathFitting() + obj.getStation() + "_merge" + "_" + obj.getTime() + ".csv";
|
|
|
}
|
|
|
if (mode == 2) {
|
|
|
processId = list.stream().map(d -> d.getId()).collect(Collectors.joining(","));
|
|
|
- fileName = config.getFilePathFitting() + obj.getStation() + "_same" + "_" + SnowFlakeUtil.generateIdL() / 100000 + ".csv";
|
|
|
+ fileName = config.getFilePathFitting() + obj.getStation() + "_same" + "_" + obj.getTime() + ".csv";
|
|
|
+ }
|
|
|
+
|
|
|
+ // 创建 File 对象
|
|
|
+ File file = new File(fileName);
|
|
|
+ // 检查文件是否存在
|
|
|
+ if (file.exists()) {
|
|
|
+ // 尝试删除文件
|
|
|
+ boolean isDeleted = file.delete();
|
|
|
+ if (isDeleted) {
|
|
|
+ System.out.println("文件删除成功: " + fileName);
|
|
|
+ } else {
|
|
|
+ System.out.println("文件删除失败: " + fileName);
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ System.out.println("文件不存在: " + fileName);
|
|
|
}
|
|
|
+ ProEconPowerFittingAnalySis obj2 = new ProEconPowerFittingAnalySis();
|
|
|
boolean flag = FileUtil.writeFile(fileName, content);
|
|
|
if (flag) { // TODO 保存数据库
|
|
|
// obj.setId(null);
|
|
|
- obj.setPath(fileName);
|
|
|
- obj.setProcessid(processId);
|
|
|
- obj.setCpavg(lf.getCpAvg());
|
|
|
- obj.setType(DATA_FITTING);
|
|
|
- proEconPowerFittingAnalySisService.saveOrUpdate(obj);
|
|
|
+
|
|
|
+ obj2.setCode(obj.getCode());
|
|
|
+ obj2.setStation(obj.getStation());
|
|
|
+ obj2.setTime(obj.getTime());
|
|
|
+ obj2.setWindturbineId(obj.getWindturbineId());
|
|
|
+ obj2.setPath(fileName);
|
|
|
+ obj2.setInterval(obj.getInterval());
|
|
|
+ obj2.setProcessid(processId);
|
|
|
+ obj2.setCpavg(lf.getCpAvg());
|
|
|
+ obj2.setType(DATA_FITTING);
|
|
|
+
|
|
|
+ proEconPowerFittingAnalySisService.delete(obj2.getTime(), fileName);
|
|
|
+ proEconPowerFittingAnalySisService.saveOrUpdate(obj2);
|
|
|
}
|
|
|
System.out.println("功率曲线拟合完成:" + obj.getWindturbineId());
|
|
|
|
|
|
- return obj;
|
|
|
+ return obj2;
|
|
|
}
|
|
|
|
|
|
|
|
@@ -562,7 +643,7 @@ public class NewDataFittingService {
|
|
|
}
|
|
|
|
|
|
private String fittingAssemble(LineCurveFitting lf) {
|
|
|
- StringBuilder sb = setTitle();
|
|
|
+ StringBuilder sb = setTitleFitting();
|
|
|
for (int i = 0; i < lf.getYLines().size(); i++) {
|
|
|
Point cp = lf.getCpValue().get(i);
|
|
|
Point gl = lf.getYLines().get(i);
|