TerrainEncoding-6954276f.js 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058
  1. /**
  2. * Cesium - https://github.com/CesiumGS/cesium
  3. *
  4. * Copyright 2011-2020 Cesium Contributors
  5. *
  6. * Licensed under the Apache License, Version 2.0 (the "License");
  7. * you may not use this file except in compliance with the License.
  8. * You may obtain a copy of the License at
  9. *
  10. * http://www.apache.org/licenses/LICENSE-2.0
  11. *
  12. * Unless required by applicable law or agreed to in writing, software
  13. * distributed under the License is distributed on an "AS IS" BASIS,
  14. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  15. * See the License for the specific language governing permissions and
  16. * limitations under the License.
  17. *
  18. * Columbus View (Pat. Pend.)
  19. *
  20. * Portions licensed separately.
  21. * See https://github.com/CesiumGS/cesium/blob/master/LICENSE.md for full licensing details.
  22. */
  23. define(['exports', './when-54c2dc71', './Check-6c0211bc', './Math-1124a290', './Cartesian2-33d2657c', './Transforms-8be64844', './ComponentDatatype-a26dd044', './AttributeCompression-75249b5e'], function (exports, when, Check, _Math, Cartesian2, Transforms, ComponentDatatype, AttributeCompression) { 'use strict';
  24. /**
  25. * Determine whether or not other objects are visible or hidden behind the visible horizon defined by
  26. * an {@link Ellipsoid} and a camera position. The ellipsoid is assumed to be located at the
  27. * origin of the coordinate system. This class uses the algorithm described in the
  28. * {@link https://cesium.com/blog/2013/04/25/Horizon-culling/|Horizon Culling} blog post.
  29. *
  30. * @alias EllipsoidalOccluder
  31. *
  32. * @param {Ellipsoid} ellipsoid The ellipsoid to use as an occluder.
  33. * @param {Cartesian3} [cameraPosition] The coordinate of the viewer/camera. If this parameter is not
  34. * specified, {@link EllipsoidalOccluder#cameraPosition} must be called before
  35. * testing visibility.
  36. *
  37. * @constructor
  38. *
  39. * @example
  40. * // Construct an ellipsoidal occluder with radii 1.0, 1.1, and 0.9.
  41. * var cameraPosition = new Cesium.Cartesian3(5.0, 6.0, 7.0);
  42. * var occluderEllipsoid = new Cesium.Ellipsoid(1.0, 1.1, 0.9);
  43. * var occluder = new Cesium.EllipsoidalOccluder(occluderEllipsoid, cameraPosition);
  44. *
  45. * @private
  46. */
  47. function EllipsoidalOccluder(ellipsoid, cameraPosition) {
  48. //>>includeStart('debug', pragmas.debug);
  49. Check.Check.typeOf.object("ellipsoid", ellipsoid);
  50. //>>includeEnd('debug');
  51. this._ellipsoid = ellipsoid;
  52. this._cameraPosition = new Cartesian2.Cartesian3();
  53. this._cameraPositionInScaledSpace = new Cartesian2.Cartesian3();
  54. this._distanceToLimbInScaledSpaceSquared = 0.0;
  55. // cameraPosition fills in the above values
  56. if (when.defined(cameraPosition)) {
  57. this.cameraPosition = cameraPosition;
  58. }
  59. }
  60. Object.defineProperties(EllipsoidalOccluder.prototype, {
  61. /**
  62. * Gets the occluding ellipsoid.
  63. * @memberof EllipsoidalOccluder.prototype
  64. * @type {Ellipsoid}
  65. */
  66. ellipsoid: {
  67. get: function () {
  68. return this._ellipsoid;
  69. },
  70. },
  71. /**
  72. * Gets or sets the position of the camera.
  73. * @memberof EllipsoidalOccluder.prototype
  74. * @type {Cartesian3}
  75. */
  76. cameraPosition: {
  77. get: function () {
  78. return this._cameraPosition;
  79. },
  80. set: function (cameraPosition) {
  81. // See https://cesium.com/blog/2013/04/25/Horizon-culling/
  82. var ellipsoid = this._ellipsoid;
  83. var cv = ellipsoid.transformPositionToScaledSpace(
  84. cameraPosition,
  85. this._cameraPositionInScaledSpace
  86. );
  87. var vhMagnitudeSquared = Cartesian2.Cartesian3.magnitudeSquared(cv) - 1.0;
  88. Cartesian2.Cartesian3.clone(cameraPosition, this._cameraPosition);
  89. this._cameraPositionInScaledSpace = cv;
  90. this._distanceToLimbInScaledSpaceSquared = vhMagnitudeSquared;
  91. },
  92. },
  93. });
  94. var scratchCartesian = new Cartesian2.Cartesian3();
  95. /**
  96. * Determines whether or not a point, the <code>occludee</code>, is hidden from view by the occluder.
  97. *
  98. * @param {Cartesian3} occludee The point to test for visibility.
  99. * @returns {Boolean} <code>true</code> if the occludee is visible; otherwise <code>false</code>.
  100. *
  101. * @example
  102. * var cameraPosition = new Cesium.Cartesian3(0, 0, 2.5);
  103. * var ellipsoid = new Cesium.Ellipsoid(1.0, 1.1, 0.9);
  104. * var occluder = new Cesium.EllipsoidalOccluder(ellipsoid, cameraPosition);
  105. * var point = new Cesium.Cartesian3(0, -3, -3);
  106. * occluder.isPointVisible(point); //returns true
  107. */
  108. EllipsoidalOccluder.prototype.isPointVisible = function (occludee) {
  109. var ellipsoid = this._ellipsoid;
  110. var occludeeScaledSpacePosition = ellipsoid.transformPositionToScaledSpace(
  111. occludee,
  112. scratchCartesian
  113. );
  114. return isScaledSpacePointVisible(
  115. occludeeScaledSpacePosition,
  116. this._cameraPositionInScaledSpace,
  117. this._distanceToLimbInScaledSpaceSquared
  118. );
  119. };
  120. /**
  121. * Determines whether or not a point expressed in the ellipsoid scaled space, is hidden from view by the
  122. * occluder. To transform a Cartesian X, Y, Z position in the coordinate system aligned with the ellipsoid
  123. * into the scaled space, call {@link Ellipsoid#transformPositionToScaledSpace}.
  124. *
  125. * @param {Cartesian3} occludeeScaledSpacePosition The point to test for visibility, represented in the scaled space.
  126. * @returns {Boolean} <code>true</code> if the occludee is visible; otherwise <code>false</code>.
  127. *
  128. * @example
  129. * var cameraPosition = new Cesium.Cartesian3(0, 0, 2.5);
  130. * var ellipsoid = new Cesium.Ellipsoid(1.0, 1.1, 0.9);
  131. * var occluder = new Cesium.EllipsoidalOccluder(ellipsoid, cameraPosition);
  132. * var point = new Cesium.Cartesian3(0, -3, -3);
  133. * var scaledSpacePoint = ellipsoid.transformPositionToScaledSpace(point);
  134. * occluder.isScaledSpacePointVisible(scaledSpacePoint); //returns true
  135. */
  136. EllipsoidalOccluder.prototype.isScaledSpacePointVisible = function (
  137. occludeeScaledSpacePosition
  138. ) {
  139. return isScaledSpacePointVisible(
  140. occludeeScaledSpacePosition,
  141. this._cameraPositionInScaledSpace,
  142. this._distanceToLimbInScaledSpaceSquared
  143. );
  144. };
  145. var scratchCameraPositionInScaledSpaceShrunk = new Cartesian2.Cartesian3();
  146. /**
  147. * Similar to {@link EllipsoidalOccluder#isScaledSpacePointVisible} except tests against an
  148. * ellipsoid that has been shrunk by the minimum height when the minimum height is below
  149. * the ellipsoid. This is intended to be used with points generated by
  150. * {@link EllipsoidalOccluder#computeHorizonCullingPointPossiblyUnderEllipsoid} or
  151. * {@link EllipsoidalOccluder#computeHorizonCullingPointFromVerticesPossiblyUnderEllipsoid}.
  152. *
  153. * @param {Cartesian3} occludeeScaledSpacePosition The point to test for visibility, represented in the scaled space of the possibly-shrunk ellipsoid.
  154. * @returns {Boolean} <code>true</code> if the occludee is visible; otherwise <code>false</code>.
  155. */
  156. EllipsoidalOccluder.prototype.isScaledSpacePointVisiblePossiblyUnderEllipsoid = function (
  157. occludeeScaledSpacePosition,
  158. minimumHeight
  159. ) {
  160. var ellipsoid = this._ellipsoid;
  161. var vhMagnitudeSquared;
  162. var cv;
  163. if (
  164. when.defined(minimumHeight) &&
  165. minimumHeight < 0.0 &&
  166. ellipsoid.minimumRadius > -minimumHeight
  167. ) {
  168. // This code is similar to the cameraPosition setter, but unrolled for performance because it will be called a lot.
  169. cv = scratchCameraPositionInScaledSpaceShrunk;
  170. cv.x = this._cameraPosition.x / (ellipsoid.radii.x + minimumHeight);
  171. cv.y = this._cameraPosition.y / (ellipsoid.radii.y + minimumHeight);
  172. cv.z = this._cameraPosition.z / (ellipsoid.radii.z + minimumHeight);
  173. vhMagnitudeSquared = cv.x * cv.x + cv.y * cv.y + cv.z * cv.z - 1.0;
  174. } else {
  175. cv = this._cameraPositionInScaledSpace;
  176. vhMagnitudeSquared = this._distanceToLimbInScaledSpaceSquared;
  177. }
  178. return isScaledSpacePointVisible(
  179. occludeeScaledSpacePosition,
  180. cv,
  181. vhMagnitudeSquared
  182. );
  183. };
  184. /**
  185. * Computes a point that can be used for horizon culling from a list of positions. If the point is below
  186. * the horizon, all of the positions are guaranteed to be below the horizon as well. The returned point
  187. * is expressed in the ellipsoid-scaled space and is suitable for use with
  188. * {@link EllipsoidalOccluder#isScaledSpacePointVisible}.
  189. *
  190. * @param {Cartesian3} directionToPoint The direction that the computed point will lie along.
  191. * A reasonable direction to use is the direction from the center of the ellipsoid to
  192. * the center of the bounding sphere computed from the positions. The direction need not
  193. * be normalized.
  194. * @param {Cartesian3[]} positions The positions from which to compute the horizon culling point. The positions
  195. * must be expressed in a reference frame centered at the ellipsoid and aligned with the
  196. * ellipsoid's axes.
  197. * @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance.
  198. * @returns {Cartesian3} The computed horizon culling point, expressed in the ellipsoid-scaled space.
  199. */
  200. EllipsoidalOccluder.prototype.computeHorizonCullingPoint = function (
  201. directionToPoint,
  202. positions,
  203. result
  204. ) {
  205. return computeHorizonCullingPointFromPositions(
  206. this._ellipsoid,
  207. directionToPoint,
  208. positions,
  209. result
  210. );
  211. };
  212. var scratchEllipsoidShrunk = Cartesian2.Ellipsoid.clone(Cartesian2.Ellipsoid.UNIT_SPHERE);
  213. /**
  214. * Similar to {@link EllipsoidalOccluder#computeHorizonCullingPoint} except computes the culling
  215. * point relative to an ellipsoid that has been shrunk by the minimum height when the minimum height is below
  216. * the ellipsoid. The returned point is expressed in the possibly-shrunk ellipsoid-scaled space and is suitable
  217. * for use with {@link EllipsoidalOccluder#isScaledSpacePointVisiblePossiblyUnderEllipsoid}.
  218. *
  219. * @param {Cartesian3} directionToPoint The direction that the computed point will lie along.
  220. * A reasonable direction to use is the direction from the center of the ellipsoid to
  221. * the center of the bounding sphere computed from the positions. The direction need not
  222. * be normalized.
  223. * @param {Cartesian3[]} positions The positions from which to compute the horizon culling point. The positions
  224. * must be expressed in a reference frame centered at the ellipsoid and aligned with the
  225. * ellipsoid's axes.
  226. * @param {Number} [minimumHeight] The minimum height of all positions. If this value is undefined, all positions are assumed to be above the ellipsoid.
  227. * @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance.
  228. * @returns {Cartesian3} The computed horizon culling point, expressed in the possibly-shrunk ellipsoid-scaled space.
  229. */
  230. EllipsoidalOccluder.prototype.computeHorizonCullingPointPossiblyUnderEllipsoid = function (
  231. directionToPoint,
  232. positions,
  233. minimumHeight,
  234. result
  235. ) {
  236. var possiblyShrunkEllipsoid = getPossiblyShrunkEllipsoid(
  237. this._ellipsoid,
  238. minimumHeight,
  239. scratchEllipsoidShrunk
  240. );
  241. return computeHorizonCullingPointFromPositions(
  242. possiblyShrunkEllipsoid,
  243. directionToPoint,
  244. positions,
  245. result
  246. );
  247. };
  248. /**
  249. * Computes a point that can be used for horizon culling from a list of positions. If the point is below
  250. * the horizon, all of the positions are guaranteed to be below the horizon as well. The returned point
  251. * is expressed in the ellipsoid-scaled space and is suitable for use with
  252. * {@link EllipsoidalOccluder#isScaledSpacePointVisible}.
  253. *
  254. * @param {Cartesian3} directionToPoint The direction that the computed point will lie along.
  255. * A reasonable direction to use is the direction from the center of the ellipsoid to
  256. * the center of the bounding sphere computed from the positions. The direction need not
  257. * be normalized.
  258. * @param {Number[]} vertices The vertices from which to compute the horizon culling point. The positions
  259. * must be expressed in a reference frame centered at the ellipsoid and aligned with the
  260. * ellipsoid's axes.
  261. * @param {Number} [stride=3]
  262. * @param {Cartesian3} [center=Cartesian3.ZERO]
  263. * @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance.
  264. * @returns {Cartesian3} The computed horizon culling point, expressed in the ellipsoid-scaled space.
  265. */
  266. EllipsoidalOccluder.prototype.computeHorizonCullingPointFromVertices = function (
  267. directionToPoint,
  268. vertices,
  269. stride,
  270. center,
  271. result
  272. ) {
  273. return computeHorizonCullingPointFromVertices(
  274. this._ellipsoid,
  275. directionToPoint,
  276. vertices,
  277. stride,
  278. center,
  279. result
  280. );
  281. };
  282. /**
  283. * Similar to {@link EllipsoidalOccluder#computeHorizonCullingPointFromVertices} except computes the culling
  284. * point relative to an ellipsoid that has been shrunk by the minimum height when the minimum height is below
  285. * the ellipsoid. The returned point is expressed in the possibly-shrunk ellipsoid-scaled space and is suitable
  286. * for use with {@link EllipsoidalOccluder#isScaledSpacePointVisiblePossiblyUnderEllipsoid}.
  287. *
  288. * @param {Cartesian3} directionToPoint The direction that the computed point will lie along.
  289. * A reasonable direction to use is the direction from the center of the ellipsoid to
  290. * the center of the bounding sphere computed from the positions. The direction need not
  291. * be normalized.
  292. * @param {Number[]} vertices The vertices from which to compute the horizon culling point. The positions
  293. * must be expressed in a reference frame centered at the ellipsoid and aligned with the
  294. * ellipsoid's axes.
  295. * @param {Number} [stride=3]
  296. * @param {Cartesian3} [center=Cartesian3.ZERO]
  297. * @param {Number} [minimumHeight] The minimum height of all vertices. If this value is undefined, all vertices are assumed to be above the ellipsoid.
  298. * @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance.
  299. * @returns {Cartesian3} The computed horizon culling point, expressed in the possibly-shrunk ellipsoid-scaled space.
  300. */
  301. EllipsoidalOccluder.prototype.computeHorizonCullingPointFromVerticesPossiblyUnderEllipsoid = function (
  302. directionToPoint,
  303. vertices,
  304. stride,
  305. center,
  306. minimumHeight,
  307. result
  308. ) {
  309. var possiblyShrunkEllipsoid = getPossiblyShrunkEllipsoid(
  310. this._ellipsoid,
  311. minimumHeight,
  312. scratchEllipsoidShrunk
  313. );
  314. return computeHorizonCullingPointFromVertices(
  315. possiblyShrunkEllipsoid,
  316. directionToPoint,
  317. vertices,
  318. stride,
  319. center,
  320. result
  321. );
  322. };
  323. var subsampleScratch = [];
  324. /**
  325. * Computes a point that can be used for horizon culling of a rectangle. If the point is below
  326. * the horizon, the ellipsoid-conforming rectangle is guaranteed to be below the horizon as well.
  327. * The returned point is expressed in the ellipsoid-scaled space and is suitable for use with
  328. * {@link EllipsoidalOccluder#isScaledSpacePointVisible}.
  329. *
  330. * @param {Rectangle} rectangle The rectangle for which to compute the horizon culling point.
  331. * @param {Ellipsoid} ellipsoid The ellipsoid on which the rectangle is defined. This may be different from
  332. * the ellipsoid used by this instance for occlusion testing.
  333. * @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance.
  334. * @returns {Cartesian3} The computed horizon culling point, expressed in the ellipsoid-scaled space.
  335. */
  336. EllipsoidalOccluder.prototype.computeHorizonCullingPointFromRectangle = function (
  337. rectangle,
  338. ellipsoid,
  339. result
  340. ) {
  341. //>>includeStart('debug', pragmas.debug);
  342. Check.Check.typeOf.object("rectangle", rectangle);
  343. //>>includeEnd('debug');
  344. var positions = Cartesian2.Rectangle.subsample(
  345. rectangle,
  346. ellipsoid,
  347. 0.0,
  348. subsampleScratch
  349. );
  350. var bs = Transforms.BoundingSphere.fromPoints(positions);
  351. // If the bounding sphere center is too close to the center of the occluder, it doesn't make
  352. // sense to try to horizon cull it.
  353. if (Cartesian2.Cartesian3.magnitude(bs.center) < 0.1 * ellipsoid.minimumRadius) {
  354. return undefined;
  355. }
  356. return this.computeHorizonCullingPoint(bs.center, positions, result);
  357. };
  358. var scratchEllipsoidShrunkRadii = new Cartesian2.Cartesian3();
  359. function getPossiblyShrunkEllipsoid(ellipsoid, minimumHeight, result) {
  360. if (
  361. when.defined(minimumHeight) &&
  362. minimumHeight < 0.0 &&
  363. ellipsoid.minimumRadius > -minimumHeight
  364. ) {
  365. var ellipsoidShrunkRadii = Cartesian2.Cartesian3.fromElements(
  366. ellipsoid.radii.x + minimumHeight,
  367. ellipsoid.radii.y + minimumHeight,
  368. ellipsoid.radii.z + minimumHeight,
  369. scratchEllipsoidShrunkRadii
  370. );
  371. ellipsoid = Cartesian2.Ellipsoid.fromCartesian3(ellipsoidShrunkRadii, result);
  372. }
  373. return ellipsoid;
  374. }
  375. function computeHorizonCullingPointFromPositions(
  376. ellipsoid,
  377. directionToPoint,
  378. positions,
  379. result
  380. ) {
  381. //>>includeStart('debug', pragmas.debug);
  382. Check.Check.typeOf.object("directionToPoint", directionToPoint);
  383. Check.Check.defined("positions", positions);
  384. //>>includeEnd('debug');
  385. if (!when.defined(result)) {
  386. result = new Cartesian2.Cartesian3();
  387. }
  388. var scaledSpaceDirectionToPoint = computeScaledSpaceDirectionToPoint(
  389. ellipsoid,
  390. directionToPoint
  391. );
  392. var resultMagnitude = 0.0;
  393. for (var i = 0, len = positions.length; i < len; ++i) {
  394. var position = positions[i];
  395. var candidateMagnitude = computeMagnitude(
  396. ellipsoid,
  397. position,
  398. scaledSpaceDirectionToPoint
  399. );
  400. if (candidateMagnitude < 0.0) {
  401. // all points should face the same direction, but this one doesn't, so return undefined
  402. return undefined;
  403. }
  404. resultMagnitude = Math.max(resultMagnitude, candidateMagnitude);
  405. }
  406. return magnitudeToPoint(scaledSpaceDirectionToPoint, resultMagnitude, result);
  407. }
  408. var positionScratch = new Cartesian2.Cartesian3();
  409. function computeHorizonCullingPointFromVertices(
  410. ellipsoid,
  411. directionToPoint,
  412. vertices,
  413. stride,
  414. center,
  415. result
  416. ) {
  417. //>>includeStart('debug', pragmas.debug);
  418. Check.Check.typeOf.object("directionToPoint", directionToPoint);
  419. Check.Check.defined("vertices", vertices);
  420. Check.Check.typeOf.number("stride", stride);
  421. //>>includeEnd('debug');
  422. if (!when.defined(result)) {
  423. result = new Cartesian2.Cartesian3();
  424. }
  425. stride = when.defaultValue(stride, 3);
  426. center = when.defaultValue(center, Cartesian2.Cartesian3.ZERO);
  427. var scaledSpaceDirectionToPoint = computeScaledSpaceDirectionToPoint(
  428. ellipsoid,
  429. directionToPoint
  430. );
  431. var resultMagnitude = 0.0;
  432. for (var i = 0, len = vertices.length; i < len; i += stride) {
  433. positionScratch.x = vertices[i] + center.x;
  434. positionScratch.y = vertices[i + 1] + center.y;
  435. positionScratch.z = vertices[i + 2] + center.z;
  436. var candidateMagnitude = computeMagnitude(
  437. ellipsoid,
  438. positionScratch,
  439. scaledSpaceDirectionToPoint
  440. );
  441. if (candidateMagnitude < 0.0) {
  442. // all points should face the same direction, but this one doesn't, so return undefined
  443. return undefined;
  444. }
  445. resultMagnitude = Math.max(resultMagnitude, candidateMagnitude);
  446. }
  447. return magnitudeToPoint(scaledSpaceDirectionToPoint, resultMagnitude, result);
  448. }
  449. function isScaledSpacePointVisible(
  450. occludeeScaledSpacePosition,
  451. cameraPositionInScaledSpace,
  452. distanceToLimbInScaledSpaceSquared
  453. ) {
  454. // See https://cesium.com/blog/2013/04/25/Horizon-culling/
  455. var cv = cameraPositionInScaledSpace;
  456. var vhMagnitudeSquared = distanceToLimbInScaledSpaceSquared;
  457. var vt = Cartesian2.Cartesian3.subtract(
  458. occludeeScaledSpacePosition,
  459. cv,
  460. scratchCartesian
  461. );
  462. var vtDotVc = -Cartesian2.Cartesian3.dot(vt, cv);
  463. // If vhMagnitudeSquared < 0 then we are below the surface of the ellipsoid and
  464. // in this case, set the culling plane to be on V.
  465. var isOccluded =
  466. vhMagnitudeSquared < 0
  467. ? vtDotVc > 0
  468. : vtDotVc > vhMagnitudeSquared &&
  469. (vtDotVc * vtDotVc) / Cartesian2.Cartesian3.magnitudeSquared(vt) >
  470. vhMagnitudeSquared;
  471. return !isOccluded;
  472. }
  473. var scaledSpaceScratch = new Cartesian2.Cartesian3();
  474. var directionScratch = new Cartesian2.Cartesian3();
  475. function computeMagnitude(ellipsoid, position, scaledSpaceDirectionToPoint) {
  476. var scaledSpacePosition = ellipsoid.transformPositionToScaledSpace(
  477. position,
  478. scaledSpaceScratch
  479. );
  480. var magnitudeSquared = Cartesian2.Cartesian3.magnitudeSquared(scaledSpacePosition);
  481. var magnitude = Math.sqrt(magnitudeSquared);
  482. var direction = Cartesian2.Cartesian3.divideByScalar(
  483. scaledSpacePosition,
  484. magnitude,
  485. directionScratch
  486. );
  487. // For the purpose of this computation, points below the ellipsoid are consider to be on it instead.
  488. magnitudeSquared = Math.max(1.0, magnitudeSquared);
  489. magnitude = Math.max(1.0, magnitude);
  490. var cosAlpha = Cartesian2.Cartesian3.dot(direction, scaledSpaceDirectionToPoint);
  491. var sinAlpha = Cartesian2.Cartesian3.magnitude(
  492. Cartesian2.Cartesian3.cross(direction, scaledSpaceDirectionToPoint, direction)
  493. );
  494. var cosBeta = 1.0 / magnitude;
  495. var sinBeta = Math.sqrt(magnitudeSquared - 1.0) * cosBeta;
  496. return 1.0 / (cosAlpha * cosBeta - sinAlpha * sinBeta);
  497. }
  498. function magnitudeToPoint(
  499. scaledSpaceDirectionToPoint,
  500. resultMagnitude,
  501. result
  502. ) {
  503. // The horizon culling point is undefined if there were no positions from which to compute it,
  504. // the directionToPoint is pointing opposite all of the positions, or if we computed NaN or infinity.
  505. if (
  506. resultMagnitude <= 0.0 ||
  507. resultMagnitude === 1.0 / 0.0 ||
  508. resultMagnitude !== resultMagnitude
  509. ) {
  510. return undefined;
  511. }
  512. return Cartesian2.Cartesian3.multiplyByScalar(
  513. scaledSpaceDirectionToPoint,
  514. resultMagnitude,
  515. result
  516. );
  517. }
  518. var directionToPointScratch = new Cartesian2.Cartesian3();
  519. function computeScaledSpaceDirectionToPoint(ellipsoid, directionToPoint) {
  520. if (Cartesian2.Cartesian3.equals(directionToPoint, Cartesian2.Cartesian3.ZERO)) {
  521. return directionToPoint;
  522. }
  523. ellipsoid.transformPositionToScaledSpace(
  524. directionToPoint,
  525. directionToPointScratch
  526. );
  527. return Cartesian2.Cartesian3.normalize(directionToPointScratch, directionToPointScratch);
  528. }
  529. /**
  530. * This enumerated type is used to determine how the vertices of the terrain mesh are compressed.
  531. *
  532. * @enum {Number}
  533. *
  534. * @private
  535. */
  536. var TerrainQuantization = {
  537. /**
  538. * The vertices are not compressed.
  539. *
  540. * @type {Number}
  541. * @constant
  542. */
  543. NONE: 0,
  544. /**
  545. * The vertices are compressed to 12 bits.
  546. *
  547. * @type {Number}
  548. * @constant
  549. */
  550. BITS12: 1,
  551. };
  552. var TerrainQuantization$1 = Object.freeze(TerrainQuantization);
  553. var cartesian3Scratch = new Cartesian2.Cartesian3();
  554. var cartesian3DimScratch = new Cartesian2.Cartesian3();
  555. var cartesian2Scratch = new Cartesian2.Cartesian2();
  556. var matrix4Scratch = new Transforms.Matrix4();
  557. var matrix4Scratch2 = new Transforms.Matrix4();
  558. var SHIFT_LEFT_12 = Math.pow(2.0, 12.0);
  559. /**
  560. * Data used to quantize and pack the terrain mesh. The position can be unpacked for picking and all attributes
  561. * are unpacked in the vertex shader.
  562. *
  563. * @alias TerrainEncoding
  564. * @constructor
  565. *
  566. * @param {AxisAlignedBoundingBox} axisAlignedBoundingBox The bounds of the tile in the east-north-up coordinates at the tiles center.
  567. * @param {Number} minimumHeight The minimum height.
  568. * @param {Number} maximumHeight The maximum height.
  569. * @param {Matrix4} fromENU The east-north-up to fixed frame matrix at the center of the terrain mesh.
  570. * @param {Boolean} hasVertexNormals If the mesh has vertex normals.
  571. * @param {Boolean} [hasWebMercatorT=false] true if the terrain data includes a Web Mercator texture coordinate; otherwise, false.
  572. *
  573. * @private
  574. */
  575. function TerrainEncoding(
  576. axisAlignedBoundingBox,
  577. minimumHeight,
  578. maximumHeight,
  579. fromENU,
  580. hasVertexNormals,
  581. hasWebMercatorT
  582. ) {
  583. var quantization = TerrainQuantization$1.NONE;
  584. var center;
  585. var toENU;
  586. var matrix;
  587. if (
  588. when.defined(axisAlignedBoundingBox) &&
  589. when.defined(minimumHeight) &&
  590. when.defined(maximumHeight) &&
  591. when.defined(fromENU)
  592. ) {
  593. var minimum = axisAlignedBoundingBox.minimum;
  594. var maximum = axisAlignedBoundingBox.maximum;
  595. var dimensions = Cartesian2.Cartesian3.subtract(
  596. maximum,
  597. minimum,
  598. cartesian3DimScratch
  599. );
  600. var hDim = maximumHeight - minimumHeight;
  601. var maxDim = Math.max(Cartesian2.Cartesian3.maximumComponent(dimensions), hDim);
  602. if (maxDim < SHIFT_LEFT_12 - 1.0) {
  603. quantization = TerrainQuantization$1.BITS12;
  604. } else {
  605. quantization = TerrainQuantization$1.NONE;
  606. }
  607. center = axisAlignedBoundingBox.center;
  608. toENU = Transforms.Matrix4.inverseTransformation(fromENU, new Transforms.Matrix4());
  609. var translation = Cartesian2.Cartesian3.negate(minimum, cartesian3Scratch);
  610. Transforms.Matrix4.multiply(
  611. Transforms.Matrix4.fromTranslation(translation, matrix4Scratch),
  612. toENU,
  613. toENU
  614. );
  615. var scale = cartesian3Scratch;
  616. scale.x = 1.0 / dimensions.x;
  617. scale.y = 1.0 / dimensions.y;
  618. scale.z = 1.0 / dimensions.z;
  619. Transforms.Matrix4.multiply(Transforms.Matrix4.fromScale(scale, matrix4Scratch), toENU, toENU);
  620. matrix = Transforms.Matrix4.clone(fromENU);
  621. Transforms.Matrix4.setTranslation(matrix, Cartesian2.Cartesian3.ZERO, matrix);
  622. fromENU = Transforms.Matrix4.clone(fromENU, new Transforms.Matrix4());
  623. var translationMatrix = Transforms.Matrix4.fromTranslation(minimum, matrix4Scratch);
  624. var scaleMatrix = Transforms.Matrix4.fromScale(dimensions, matrix4Scratch2);
  625. var st = Transforms.Matrix4.multiply(translationMatrix, scaleMatrix, matrix4Scratch);
  626. Transforms.Matrix4.multiply(fromENU, st, fromENU);
  627. Transforms.Matrix4.multiply(matrix, st, matrix);
  628. }
  629. /**
  630. * How the vertices of the mesh were compressed.
  631. * @type {TerrainQuantization}
  632. */
  633. this.quantization = quantization;
  634. /**
  635. * The minimum height of the tile including the skirts.
  636. * @type {Number}
  637. */
  638. this.minimumHeight = minimumHeight;
  639. /**
  640. * The maximum height of the tile.
  641. * @type {Number}
  642. */
  643. this.maximumHeight = maximumHeight;
  644. /**
  645. * The center of the tile.
  646. * @type {Cartesian3}
  647. */
  648. this.center = center;
  649. /**
  650. * A matrix that takes a vertex from the tile, transforms it to east-north-up at the center and scales
  651. * it so each component is in the [0, 1] range.
  652. * @type {Matrix4}
  653. */
  654. this.toScaledENU = toENU;
  655. /**
  656. * A matrix that restores a vertex transformed with toScaledENU back to the earth fixed reference frame
  657. * @type {Matrix4}
  658. */
  659. this.fromScaledENU = fromENU;
  660. /**
  661. * The matrix used to decompress the terrain vertices in the shader for RTE rendering.
  662. * @type {Matrix4}
  663. */
  664. this.matrix = matrix;
  665. /**
  666. * The terrain mesh contains normals.
  667. * @type {Boolean}
  668. */
  669. this.hasVertexNormals = hasVertexNormals;
  670. /**
  671. * The terrain mesh contains a vertical texture coordinate following the Web Mercator projection.
  672. * @type {Boolean}
  673. */
  674. this.hasWebMercatorT = when.defaultValue(hasWebMercatorT, false);
  675. }
  676. TerrainEncoding.prototype.encode = function (
  677. vertexBuffer,
  678. bufferIndex,
  679. position,
  680. uv,
  681. height,
  682. normalToPack,
  683. webMercatorT
  684. ) {
  685. var u = uv.x;
  686. var v = uv.y;
  687. if (this.quantization === TerrainQuantization$1.BITS12) {
  688. position = Transforms.Matrix4.multiplyByPoint(
  689. this.toScaledENU,
  690. position,
  691. cartesian3Scratch
  692. );
  693. position.x = _Math.CesiumMath.clamp(position.x, 0.0, 1.0);
  694. position.y = _Math.CesiumMath.clamp(position.y, 0.0, 1.0);
  695. position.z = _Math.CesiumMath.clamp(position.z, 0.0, 1.0);
  696. var hDim = this.maximumHeight - this.minimumHeight;
  697. var h = _Math.CesiumMath.clamp((height - this.minimumHeight) / hDim, 0.0, 1.0);
  698. Cartesian2.Cartesian2.fromElements(position.x, position.y, cartesian2Scratch);
  699. var compressed0 = AttributeCompression.AttributeCompression.compressTextureCoordinates(
  700. cartesian2Scratch
  701. );
  702. Cartesian2.Cartesian2.fromElements(position.z, h, cartesian2Scratch);
  703. var compressed1 = AttributeCompression.AttributeCompression.compressTextureCoordinates(
  704. cartesian2Scratch
  705. );
  706. Cartesian2.Cartesian2.fromElements(u, v, cartesian2Scratch);
  707. var compressed2 = AttributeCompression.AttributeCompression.compressTextureCoordinates(
  708. cartesian2Scratch
  709. );
  710. vertexBuffer[bufferIndex++] = compressed0;
  711. vertexBuffer[bufferIndex++] = compressed1;
  712. vertexBuffer[bufferIndex++] = compressed2;
  713. if (this.hasWebMercatorT) {
  714. Cartesian2.Cartesian2.fromElements(webMercatorT, 0.0, cartesian2Scratch);
  715. var compressed3 = AttributeCompression.AttributeCompression.compressTextureCoordinates(
  716. cartesian2Scratch
  717. );
  718. vertexBuffer[bufferIndex++] = compressed3;
  719. }
  720. } else {
  721. Cartesian2.Cartesian3.subtract(position, this.center, cartesian3Scratch);
  722. vertexBuffer[bufferIndex++] = cartesian3Scratch.x;
  723. vertexBuffer[bufferIndex++] = cartesian3Scratch.y;
  724. vertexBuffer[bufferIndex++] = cartesian3Scratch.z;
  725. vertexBuffer[bufferIndex++] = height;
  726. vertexBuffer[bufferIndex++] = u;
  727. vertexBuffer[bufferIndex++] = v;
  728. if (this.hasWebMercatorT) {
  729. vertexBuffer[bufferIndex++] = webMercatorT;
  730. }
  731. }
  732. if (this.hasVertexNormals) {
  733. vertexBuffer[bufferIndex++] = AttributeCompression.AttributeCompression.octPackFloat(
  734. normalToPack
  735. );
  736. }
  737. return bufferIndex;
  738. };
  739. TerrainEncoding.prototype.decodePosition = function (buffer, index, result) {
  740. if (!when.defined(result)) {
  741. result = new Cartesian2.Cartesian3();
  742. }
  743. index *= this.getStride();
  744. if (this.quantization === TerrainQuantization$1.BITS12) {
  745. var xy = AttributeCompression.AttributeCompression.decompressTextureCoordinates(
  746. buffer[index],
  747. cartesian2Scratch
  748. );
  749. result.x = xy.x;
  750. result.y = xy.y;
  751. var zh = AttributeCompression.AttributeCompression.decompressTextureCoordinates(
  752. buffer[index + 1],
  753. cartesian2Scratch
  754. );
  755. result.z = zh.x;
  756. return Transforms.Matrix4.multiplyByPoint(this.fromScaledENU, result, result);
  757. }
  758. result.x = buffer[index];
  759. result.y = buffer[index + 1];
  760. result.z = buffer[index + 2];
  761. return Cartesian2.Cartesian3.add(result, this.center, result);
  762. };
  763. TerrainEncoding.prototype.decodeTextureCoordinates = function (
  764. buffer,
  765. index,
  766. result
  767. ) {
  768. if (!when.defined(result)) {
  769. result = new Cartesian2.Cartesian2();
  770. }
  771. index *= this.getStride();
  772. if (this.quantization === TerrainQuantization$1.BITS12) {
  773. return AttributeCompression.AttributeCompression.decompressTextureCoordinates(
  774. buffer[index + 2],
  775. result
  776. );
  777. }
  778. return Cartesian2.Cartesian2.fromElements(buffer[index + 4], buffer[index + 5], result);
  779. };
  780. TerrainEncoding.prototype.decodeHeight = function (buffer, index) {
  781. index *= this.getStride();
  782. if (this.quantization === TerrainQuantization$1.BITS12) {
  783. var zh = AttributeCompression.AttributeCompression.decompressTextureCoordinates(
  784. buffer[index + 1],
  785. cartesian2Scratch
  786. );
  787. return (
  788. zh.y * (this.maximumHeight - this.minimumHeight) + this.minimumHeight
  789. );
  790. }
  791. return buffer[index + 3];
  792. };
  793. TerrainEncoding.prototype.decodeWebMercatorT = function (buffer, index) {
  794. index *= this.getStride();
  795. if (this.quantization === TerrainQuantization$1.BITS12) {
  796. return AttributeCompression.AttributeCompression.decompressTextureCoordinates(
  797. buffer[index + 3],
  798. cartesian2Scratch
  799. ).x;
  800. }
  801. return buffer[index + 6];
  802. };
  803. TerrainEncoding.prototype.getOctEncodedNormal = function (
  804. buffer,
  805. index,
  806. result
  807. ) {
  808. var stride = this.getStride();
  809. index = (index + 1) * stride - 1;
  810. var temp = buffer[index] / 256.0;
  811. var x = Math.floor(temp);
  812. var y = (temp - x) * 256.0;
  813. return Cartesian2.Cartesian2.fromElements(x, y, result);
  814. };
  815. TerrainEncoding.prototype.getStride = function () {
  816. var vertexStride;
  817. switch (this.quantization) {
  818. case TerrainQuantization$1.BITS12:
  819. vertexStride = 3;
  820. break;
  821. default:
  822. vertexStride = 6;
  823. }
  824. if (this.hasWebMercatorT) {
  825. ++vertexStride;
  826. }
  827. if (this.hasVertexNormals) {
  828. ++vertexStride;
  829. }
  830. return vertexStride;
  831. };
  832. var attributesNone = {
  833. position3DAndHeight: 0,
  834. textureCoordAndEncodedNormals: 1,
  835. };
  836. var attributes = {
  837. compressed0: 0,
  838. compressed1: 1,
  839. };
  840. TerrainEncoding.prototype.getAttributes = function (buffer) {
  841. var datatype = ComponentDatatype.ComponentDatatype.FLOAT;
  842. var sizeInBytes = ComponentDatatype.ComponentDatatype.getSizeInBytes(datatype);
  843. var stride;
  844. if (this.quantization === TerrainQuantization$1.NONE) {
  845. var position3DAndHeightLength = 4;
  846. var numTexCoordComponents = 2;
  847. if (this.hasWebMercatorT) {
  848. ++numTexCoordComponents;
  849. }
  850. if (this.hasVertexNormals) {
  851. ++numTexCoordComponents;
  852. }
  853. stride = (position3DAndHeightLength + numTexCoordComponents) * sizeInBytes;
  854. return [
  855. {
  856. index: attributesNone.position3DAndHeight,
  857. vertexBuffer: buffer,
  858. componentDatatype: datatype,
  859. componentsPerAttribute: position3DAndHeightLength,
  860. offsetInBytes: 0,
  861. strideInBytes: stride,
  862. },
  863. {
  864. index: attributesNone.textureCoordAndEncodedNormals,
  865. vertexBuffer: buffer,
  866. componentDatatype: datatype,
  867. componentsPerAttribute: numTexCoordComponents,
  868. offsetInBytes: position3DAndHeightLength * sizeInBytes,
  869. strideInBytes: stride,
  870. },
  871. ];
  872. }
  873. var numCompressed0 = 3;
  874. var numCompressed1 = 0;
  875. if (this.hasWebMercatorT || this.hasVertexNormals) {
  876. ++numCompressed0;
  877. }
  878. if (this.hasWebMercatorT && this.hasVertexNormals) {
  879. ++numCompressed1;
  880. stride = (numCompressed0 + numCompressed1) * sizeInBytes;
  881. return [
  882. {
  883. index: attributes.compressed0,
  884. vertexBuffer: buffer,
  885. componentDatatype: datatype,
  886. componentsPerAttribute: numCompressed0,
  887. offsetInBytes: 0,
  888. strideInBytes: stride,
  889. },
  890. {
  891. index: attributes.compressed1,
  892. vertexBuffer: buffer,
  893. componentDatatype: datatype,
  894. componentsPerAttribute: numCompressed1,
  895. offsetInBytes: numCompressed0 * sizeInBytes,
  896. strideInBytes: stride,
  897. },
  898. ];
  899. }
  900. return [
  901. {
  902. index: attributes.compressed0,
  903. vertexBuffer: buffer,
  904. componentDatatype: datatype,
  905. componentsPerAttribute: numCompressed0,
  906. },
  907. ];
  908. };
  909. TerrainEncoding.prototype.getAttributeLocations = function () {
  910. if (this.quantization === TerrainQuantization$1.NONE) {
  911. return attributesNone;
  912. }
  913. return attributes;
  914. };
  915. TerrainEncoding.clone = function (encoding, result) {
  916. if (!when.defined(result)) {
  917. result = new TerrainEncoding();
  918. }
  919. result.quantization = encoding.quantization;
  920. result.minimumHeight = encoding.minimumHeight;
  921. result.maximumHeight = encoding.maximumHeight;
  922. result.center = Cartesian2.Cartesian3.clone(encoding.center);
  923. result.toScaledENU = Transforms.Matrix4.clone(encoding.toScaledENU);
  924. result.fromScaledENU = Transforms.Matrix4.clone(encoding.fromScaledENU);
  925. result.matrix = Transforms.Matrix4.clone(encoding.matrix);
  926. result.hasVertexNormals = encoding.hasVertexNormals;
  927. result.hasWebMercatorT = encoding.hasWebMercatorT;
  928. return result;
  929. };
  930. exports.EllipsoidalOccluder = EllipsoidalOccluder;
  931. exports.TerrainEncoding = TerrainEncoding;
  932. });
  933. //# sourceMappingURL=TerrainEncoding-6954276f.js.map