EllipsoidOutlineGeometry-040f1e9f.js 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479
  1. /**
  2. * Cesium - https://github.com/CesiumGS/cesium
  3. *
  4. * Copyright 2011-2020 Cesium Contributors
  5. *
  6. * Licensed under the Apache License, Version 2.0 (the "License");
  7. * you may not use this file except in compliance with the License.
  8. * You may obtain a copy of the License at
  9. *
  10. * http://www.apache.org/licenses/LICENSE-2.0
  11. *
  12. * Unless required by applicable law or agreed to in writing, software
  13. * distributed under the License is distributed on an "AS IS" BASIS,
  14. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  15. * See the License for the specific language governing permissions and
  16. * limitations under the License.
  17. *
  18. * Columbus View (Pat. Pend.)
  19. *
  20. * Portions licensed separately.
  21. * See https://github.com/CesiumGS/cesium/blob/master/LICENSE.md for full licensing details.
  22. */
  23. define(['exports', './when-54c2dc71', './Check-6c0211bc', './Math-1124a290', './Cartesian2-33d2657c', './Transforms-8be64844', './ComponentDatatype-a26dd044', './GeometryAttribute-e9a8b203', './GeometryAttributes-4fcfcf40', './IndexDatatype-25023891', './GeometryOffsetAttribute-d746452d'], function (exports, when, Check, _Math, Cartesian2, Transforms, ComponentDatatype, GeometryAttribute, GeometryAttributes, IndexDatatype, GeometryOffsetAttribute) { 'use strict';
  24. var defaultRadii = new Cartesian2.Cartesian3(1.0, 1.0, 1.0);
  25. var cos = Math.cos;
  26. var sin = Math.sin;
  27. /**
  28. * A description of the outline of an ellipsoid centered at the origin.
  29. *
  30. * @alias EllipsoidOutlineGeometry
  31. * @constructor
  32. *
  33. * @param {Object} [options] Object with the following properties:
  34. * @param {Cartesian3} [options.radii=Cartesian3(1.0, 1.0, 1.0)] The radii of the ellipsoid in the x, y, and z directions.
  35. * @param {Cartesian3} [options.innerRadii=options.radii] The inner radii of the ellipsoid in the x, y, and z directions.
  36. * @param {Number} [options.minimumClock=0.0] The minimum angle lying in the xy-plane measured from the positive x-axis and toward the positive y-axis.
  37. * @param {Number} [options.maximumClock=2*PI] The maximum angle lying in the xy-plane measured from the positive x-axis and toward the positive y-axis.
  38. * @param {Number} [options.minimumCone=0.0] The minimum angle measured from the positive z-axis and toward the negative z-axis.
  39. * @param {Number} [options.maximumCone=PI] The maximum angle measured from the positive z-axis and toward the negative z-axis.
  40. * @param {Number} [options.stackPartitions=10] The count of stacks for the ellipsoid (1 greater than the number of parallel lines).
  41. * @param {Number} [options.slicePartitions=8] The count of slices for the ellipsoid (Equal to the number of radial lines).
  42. * @param {Number} [options.subdivisions=128] The number of points per line, determining the granularity of the curvature.
  43. *
  44. * @exception {DeveloperError} options.stackPartitions must be greater than or equal to one.
  45. * @exception {DeveloperError} options.slicePartitions must be greater than or equal to zero.
  46. * @exception {DeveloperError} options.subdivisions must be greater than or equal to zero.
  47. *
  48. * @example
  49. * var ellipsoid = new Cesium.EllipsoidOutlineGeometry({
  50. * radii : new Cesium.Cartesian3(1000000.0, 500000.0, 500000.0),
  51. * stackPartitions: 6,
  52. * slicePartitions: 5
  53. * });
  54. * var geometry = Cesium.EllipsoidOutlineGeometry.createGeometry(ellipsoid);
  55. */
  56. function EllipsoidOutlineGeometry(options) {
  57. options = when.defaultValue(options, when.defaultValue.EMPTY_OBJECT);
  58. var radii = when.defaultValue(options.radii, defaultRadii);
  59. var innerRadii = when.defaultValue(options.innerRadii, radii);
  60. var minimumClock = when.defaultValue(options.minimumClock, 0.0);
  61. var maximumClock = when.defaultValue(options.maximumClock, _Math.CesiumMath.TWO_PI);
  62. var minimumCone = when.defaultValue(options.minimumCone, 0.0);
  63. var maximumCone = when.defaultValue(options.maximumCone, _Math.CesiumMath.PI);
  64. var stackPartitions = Math.round(when.defaultValue(options.stackPartitions, 10));
  65. var slicePartitions = Math.round(when.defaultValue(options.slicePartitions, 8));
  66. var subdivisions = Math.round(when.defaultValue(options.subdivisions, 128));
  67. //>>includeStart('debug', pragmas.debug);
  68. if (stackPartitions < 1) {
  69. throw new Check.DeveloperError("options.stackPartitions cannot be less than 1");
  70. }
  71. if (slicePartitions < 0) {
  72. throw new Check.DeveloperError("options.slicePartitions cannot be less than 0");
  73. }
  74. if (subdivisions < 0) {
  75. throw new Check.DeveloperError(
  76. "options.subdivisions must be greater than or equal to zero."
  77. );
  78. }
  79. if (
  80. when.defined(options.offsetAttribute) &&
  81. options.offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.TOP
  82. ) {
  83. throw new Check.DeveloperError(
  84. "GeometryOffsetAttribute.TOP is not a supported options.offsetAttribute for this geometry."
  85. );
  86. }
  87. //>>includeEnd('debug');
  88. this._radii = Cartesian2.Cartesian3.clone(radii);
  89. this._innerRadii = Cartesian2.Cartesian3.clone(innerRadii);
  90. this._minimumClock = minimumClock;
  91. this._maximumClock = maximumClock;
  92. this._minimumCone = minimumCone;
  93. this._maximumCone = maximumCone;
  94. this._stackPartitions = stackPartitions;
  95. this._slicePartitions = slicePartitions;
  96. this._subdivisions = subdivisions;
  97. this._offsetAttribute = options.offsetAttribute;
  98. this._workerName = "createEllipsoidOutlineGeometry";
  99. }
  100. /**
  101. * The number of elements used to pack the object into an array.
  102. * @type {Number}
  103. */
  104. EllipsoidOutlineGeometry.packedLength = 2 * Cartesian2.Cartesian3.packedLength + 8;
  105. /**
  106. * Stores the provided instance into the provided array.
  107. *
  108. * @param {EllipsoidOutlineGeometry} value The value to pack.
  109. * @param {Number[]} array The array to pack into.
  110. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
  111. *
  112. * @returns {Number[]} The array that was packed into
  113. */
  114. EllipsoidOutlineGeometry.pack = function (value, array, startingIndex) {
  115. //>>includeStart('debug', pragmas.debug);
  116. if (!when.defined(value)) {
  117. throw new Check.DeveloperError("value is required");
  118. }
  119. if (!when.defined(array)) {
  120. throw new Check.DeveloperError("array is required");
  121. }
  122. //>>includeEnd('debug');
  123. startingIndex = when.defaultValue(startingIndex, 0);
  124. Cartesian2.Cartesian3.pack(value._radii, array, startingIndex);
  125. startingIndex += Cartesian2.Cartesian3.packedLength;
  126. Cartesian2.Cartesian3.pack(value._innerRadii, array, startingIndex);
  127. startingIndex += Cartesian2.Cartesian3.packedLength;
  128. array[startingIndex++] = value._minimumClock;
  129. array[startingIndex++] = value._maximumClock;
  130. array[startingIndex++] = value._minimumCone;
  131. array[startingIndex++] = value._maximumCone;
  132. array[startingIndex++] = value._stackPartitions;
  133. array[startingIndex++] = value._slicePartitions;
  134. array[startingIndex++] = value._subdivisions;
  135. array[startingIndex] = when.defaultValue(value._offsetAttribute, -1);
  136. return array;
  137. };
  138. var scratchRadii = new Cartesian2.Cartesian3();
  139. var scratchInnerRadii = new Cartesian2.Cartesian3();
  140. var scratchOptions = {
  141. radii: scratchRadii,
  142. innerRadii: scratchInnerRadii,
  143. minimumClock: undefined,
  144. maximumClock: undefined,
  145. minimumCone: undefined,
  146. maximumCone: undefined,
  147. stackPartitions: undefined,
  148. slicePartitions: undefined,
  149. subdivisions: undefined,
  150. offsetAttribute: undefined,
  151. };
  152. /**
  153. * Retrieves an instance from a packed array.
  154. *
  155. * @param {Number[]} array The packed array.
  156. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
  157. * @param {EllipsoidOutlineGeometry} [result] The object into which to store the result.
  158. * @returns {EllipsoidOutlineGeometry} The modified result parameter or a new EllipsoidOutlineGeometry instance if one was not provided.
  159. */
  160. EllipsoidOutlineGeometry.unpack = function (array, startingIndex, result) {
  161. //>>includeStart('debug', pragmas.debug);
  162. if (!when.defined(array)) {
  163. throw new Check.DeveloperError("array is required");
  164. }
  165. //>>includeEnd('debug');
  166. startingIndex = when.defaultValue(startingIndex, 0);
  167. var radii = Cartesian2.Cartesian3.unpack(array, startingIndex, scratchRadii);
  168. startingIndex += Cartesian2.Cartesian3.packedLength;
  169. var innerRadii = Cartesian2.Cartesian3.unpack(array, startingIndex, scratchInnerRadii);
  170. startingIndex += Cartesian2.Cartesian3.packedLength;
  171. var minimumClock = array[startingIndex++];
  172. var maximumClock = array[startingIndex++];
  173. var minimumCone = array[startingIndex++];
  174. var maximumCone = array[startingIndex++];
  175. var stackPartitions = array[startingIndex++];
  176. var slicePartitions = array[startingIndex++];
  177. var subdivisions = array[startingIndex++];
  178. var offsetAttribute = array[startingIndex];
  179. if (!when.defined(result)) {
  180. scratchOptions.minimumClock = minimumClock;
  181. scratchOptions.maximumClock = maximumClock;
  182. scratchOptions.minimumCone = minimumCone;
  183. scratchOptions.maximumCone = maximumCone;
  184. scratchOptions.stackPartitions = stackPartitions;
  185. scratchOptions.slicePartitions = slicePartitions;
  186. scratchOptions.subdivisions = subdivisions;
  187. scratchOptions.offsetAttribute =
  188. offsetAttribute === -1 ? undefined : offsetAttribute;
  189. return new EllipsoidOutlineGeometry(scratchOptions);
  190. }
  191. result._radii = Cartesian2.Cartesian3.clone(radii, result._radii);
  192. result._innerRadii = Cartesian2.Cartesian3.clone(innerRadii, result._innerRadii);
  193. result._minimumClock = minimumClock;
  194. result._maximumClock = maximumClock;
  195. result._minimumCone = minimumCone;
  196. result._maximumCone = maximumCone;
  197. result._stackPartitions = stackPartitions;
  198. result._slicePartitions = slicePartitions;
  199. result._subdivisions = subdivisions;
  200. result._offsetAttribute =
  201. offsetAttribute === -1 ? undefined : offsetAttribute;
  202. return result;
  203. };
  204. /**
  205. * Computes the geometric representation of an outline of an ellipsoid, including its vertices, indices, and a bounding sphere.
  206. *
  207. * @param {EllipsoidOutlineGeometry} ellipsoidGeometry A description of the ellipsoid outline.
  208. * @returns {Geometry|undefined} The computed vertices and indices.
  209. */
  210. EllipsoidOutlineGeometry.createGeometry = function (ellipsoidGeometry) {
  211. var radii = ellipsoidGeometry._radii;
  212. if (radii.x <= 0 || radii.y <= 0 || radii.z <= 0) {
  213. return;
  214. }
  215. var innerRadii = ellipsoidGeometry._innerRadii;
  216. if (innerRadii.x <= 0 || innerRadii.y <= 0 || innerRadii.z <= 0) {
  217. return;
  218. }
  219. var minimumClock = ellipsoidGeometry._minimumClock;
  220. var maximumClock = ellipsoidGeometry._maximumClock;
  221. var minimumCone = ellipsoidGeometry._minimumCone;
  222. var maximumCone = ellipsoidGeometry._maximumCone;
  223. var subdivisions = ellipsoidGeometry._subdivisions;
  224. var ellipsoid = Cartesian2.Ellipsoid.fromCartesian3(radii);
  225. // Add an extra slice and stack to remain consistent with EllipsoidGeometry
  226. var slicePartitions = ellipsoidGeometry._slicePartitions + 1;
  227. var stackPartitions = ellipsoidGeometry._stackPartitions + 1;
  228. slicePartitions = Math.round(
  229. (slicePartitions * Math.abs(maximumClock - minimumClock)) /
  230. _Math.CesiumMath.TWO_PI
  231. );
  232. stackPartitions = Math.round(
  233. (stackPartitions * Math.abs(maximumCone - minimumCone)) / _Math.CesiumMath.PI
  234. );
  235. if (slicePartitions < 2) {
  236. slicePartitions = 2;
  237. }
  238. if (stackPartitions < 2) {
  239. stackPartitions = 2;
  240. }
  241. var extraIndices = 0;
  242. var vertexMultiplier = 1.0;
  243. var hasInnerSurface =
  244. innerRadii.x !== radii.x ||
  245. innerRadii.y !== radii.y ||
  246. innerRadii.z !== radii.z;
  247. var isTopOpen = false;
  248. var isBotOpen = false;
  249. if (hasInnerSurface) {
  250. vertexMultiplier = 2.0;
  251. // Add 2x slicePartitions to connect the top/bottom of the outer to
  252. // the top/bottom of the inner
  253. if (minimumCone > 0.0) {
  254. isTopOpen = true;
  255. extraIndices += slicePartitions;
  256. }
  257. if (maximumCone < Math.PI) {
  258. isBotOpen = true;
  259. extraIndices += slicePartitions;
  260. }
  261. }
  262. var vertexCount =
  263. subdivisions * vertexMultiplier * (stackPartitions + slicePartitions);
  264. var positions = new Float64Array(vertexCount * 3);
  265. // Multiply by two because two points define each line segment
  266. var numIndices =
  267. 2 *
  268. (vertexCount +
  269. extraIndices -
  270. (slicePartitions + stackPartitions) * vertexMultiplier);
  271. var indices = IndexDatatype.IndexDatatype.createTypedArray(vertexCount, numIndices);
  272. var i;
  273. var j;
  274. var theta;
  275. var phi;
  276. var index = 0;
  277. // Calculate sin/cos phi
  278. var sinPhi = new Array(stackPartitions);
  279. var cosPhi = new Array(stackPartitions);
  280. for (i = 0; i < stackPartitions; i++) {
  281. phi =
  282. minimumCone + (i * (maximumCone - minimumCone)) / (stackPartitions - 1);
  283. sinPhi[i] = sin(phi);
  284. cosPhi[i] = cos(phi);
  285. }
  286. // Calculate sin/cos theta
  287. var sinTheta = new Array(subdivisions);
  288. var cosTheta = new Array(subdivisions);
  289. for (i = 0; i < subdivisions; i++) {
  290. theta =
  291. minimumClock + (i * (maximumClock - minimumClock)) / (subdivisions - 1);
  292. sinTheta[i] = sin(theta);
  293. cosTheta[i] = cos(theta);
  294. }
  295. // Calculate the latitude lines on the outer surface
  296. for (i = 0; i < stackPartitions; i++) {
  297. for (j = 0; j < subdivisions; j++) {
  298. positions[index++] = radii.x * sinPhi[i] * cosTheta[j];
  299. positions[index++] = radii.y * sinPhi[i] * sinTheta[j];
  300. positions[index++] = radii.z * cosPhi[i];
  301. }
  302. }
  303. // Calculate the latitude lines on the inner surface
  304. if (hasInnerSurface) {
  305. for (i = 0; i < stackPartitions; i++) {
  306. for (j = 0; j < subdivisions; j++) {
  307. positions[index++] = innerRadii.x * sinPhi[i] * cosTheta[j];
  308. positions[index++] = innerRadii.y * sinPhi[i] * sinTheta[j];
  309. positions[index++] = innerRadii.z * cosPhi[i];
  310. }
  311. }
  312. }
  313. // Calculate sin/cos phi
  314. sinPhi.length = subdivisions;
  315. cosPhi.length = subdivisions;
  316. for (i = 0; i < subdivisions; i++) {
  317. phi = minimumCone + (i * (maximumCone - minimumCone)) / (subdivisions - 1);
  318. sinPhi[i] = sin(phi);
  319. cosPhi[i] = cos(phi);
  320. }
  321. // Calculate sin/cos theta for each slice partition
  322. sinTheta.length = slicePartitions;
  323. cosTheta.length = slicePartitions;
  324. for (i = 0; i < slicePartitions; i++) {
  325. theta =
  326. minimumClock +
  327. (i * (maximumClock - minimumClock)) / (slicePartitions - 1);
  328. sinTheta[i] = sin(theta);
  329. cosTheta[i] = cos(theta);
  330. }
  331. // Calculate the longitude lines on the outer surface
  332. for (i = 0; i < subdivisions; i++) {
  333. for (j = 0; j < slicePartitions; j++) {
  334. positions[index++] = radii.x * sinPhi[i] * cosTheta[j];
  335. positions[index++] = radii.y * sinPhi[i] * sinTheta[j];
  336. positions[index++] = radii.z * cosPhi[i];
  337. }
  338. }
  339. // Calculate the longitude lines on the inner surface
  340. if (hasInnerSurface) {
  341. for (i = 0; i < subdivisions; i++) {
  342. for (j = 0; j < slicePartitions; j++) {
  343. positions[index++] = innerRadii.x * sinPhi[i] * cosTheta[j];
  344. positions[index++] = innerRadii.y * sinPhi[i] * sinTheta[j];
  345. positions[index++] = innerRadii.z * cosPhi[i];
  346. }
  347. }
  348. }
  349. // Create indices for the latitude lines
  350. index = 0;
  351. for (i = 0; i < stackPartitions * vertexMultiplier; i++) {
  352. var topOffset = i * subdivisions;
  353. for (j = 0; j < subdivisions - 1; j++) {
  354. indices[index++] = topOffset + j;
  355. indices[index++] = topOffset + j + 1;
  356. }
  357. }
  358. // Create indices for the outer longitude lines
  359. var offset = stackPartitions * subdivisions * vertexMultiplier;
  360. for (i = 0; i < slicePartitions; i++) {
  361. for (j = 0; j < subdivisions - 1; j++) {
  362. indices[index++] = offset + i + j * slicePartitions;
  363. indices[index++] = offset + i + (j + 1) * slicePartitions;
  364. }
  365. }
  366. // Create indices for the inner longitude lines
  367. if (hasInnerSurface) {
  368. offset =
  369. stackPartitions * subdivisions * vertexMultiplier +
  370. slicePartitions * subdivisions;
  371. for (i = 0; i < slicePartitions; i++) {
  372. for (j = 0; j < subdivisions - 1; j++) {
  373. indices[index++] = offset + i + j * slicePartitions;
  374. indices[index++] = offset + i + (j + 1) * slicePartitions;
  375. }
  376. }
  377. }
  378. if (hasInnerSurface) {
  379. var outerOffset = stackPartitions * subdivisions * vertexMultiplier;
  380. var innerOffset = outerOffset + subdivisions * slicePartitions;
  381. if (isTopOpen) {
  382. // Draw lines from the top of the inner surface to the top of the outer surface
  383. for (i = 0; i < slicePartitions; i++) {
  384. indices[index++] = outerOffset + i;
  385. indices[index++] = innerOffset + i;
  386. }
  387. }
  388. if (isBotOpen) {
  389. // Draw lines from the top of the inner surface to the top of the outer surface
  390. outerOffset += subdivisions * slicePartitions - slicePartitions;
  391. innerOffset += subdivisions * slicePartitions - slicePartitions;
  392. for (i = 0; i < slicePartitions; i++) {
  393. indices[index++] = outerOffset + i;
  394. indices[index++] = innerOffset + i;
  395. }
  396. }
  397. }
  398. var attributes = new GeometryAttributes.GeometryAttributes({
  399. position: new GeometryAttribute.GeometryAttribute({
  400. componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE,
  401. componentsPerAttribute: 3,
  402. values: positions,
  403. }),
  404. });
  405. if (when.defined(ellipsoidGeometry._offsetAttribute)) {
  406. var length = positions.length;
  407. var applyOffset = new Uint8Array(length / 3);
  408. var offsetValue =
  409. ellipsoidGeometry._offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.NONE
  410. ? 0
  411. : 1;
  412. GeometryOffsetAttribute.arrayFill(applyOffset, offsetValue);
  413. attributes.applyOffset = new GeometryAttribute.GeometryAttribute({
  414. componentDatatype: ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE,
  415. componentsPerAttribute: 1,
  416. values: applyOffset,
  417. });
  418. }
  419. return new GeometryAttribute.Geometry({
  420. attributes: attributes,
  421. indices: indices,
  422. primitiveType: GeometryAttribute.PrimitiveType.LINES,
  423. boundingSphere: Transforms.BoundingSphere.fromEllipsoid(ellipsoid),
  424. offsetAttribute: ellipsoidGeometry._offsetAttribute,
  425. });
  426. };
  427. exports.EllipsoidOutlineGeometry = EllipsoidOutlineGeometry;
  428. });
  429. //# sourceMappingURL=EllipsoidOutlineGeometry-040f1e9f.js.map