EllipseGeometryLibrary-12b8d523.js 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388
  1. /**
  2. * Cesium - https://github.com/CesiumGS/cesium
  3. *
  4. * Copyright 2011-2020 Cesium Contributors
  5. *
  6. * Licensed under the Apache License, Version 2.0 (the "License");
  7. * you may not use this file except in compliance with the License.
  8. * You may obtain a copy of the License at
  9. *
  10. * http://www.apache.org/licenses/LICENSE-2.0
  11. *
  12. * Unless required by applicable law or agreed to in writing, software
  13. * distributed under the License is distributed on an "AS IS" BASIS,
  14. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  15. * See the License for the specific language governing permissions and
  16. * limitations under the License.
  17. *
  18. * Columbus View (Pat. Pend.)
  19. *
  20. * Portions licensed separately.
  21. * See https://github.com/CesiumGS/cesium/blob/master/LICENSE.md for full licensing details.
  22. */
  23. define(['exports', './Math-1124a290', './Cartesian2-33d2657c', './Transforms-8be64844'], function (exports, _Math, Cartesian2, Transforms) { 'use strict';
  24. var EllipseGeometryLibrary = {};
  25. var rotAxis = new Cartesian2.Cartesian3();
  26. var tempVec = new Cartesian2.Cartesian3();
  27. var unitQuat = new Transforms.Quaternion();
  28. var rotMtx = new Transforms.Matrix3();
  29. function pointOnEllipsoid(
  30. theta,
  31. rotation,
  32. northVec,
  33. eastVec,
  34. aSqr,
  35. ab,
  36. bSqr,
  37. mag,
  38. unitPos,
  39. result
  40. ) {
  41. var azimuth = theta + rotation;
  42. Cartesian2.Cartesian3.multiplyByScalar(eastVec, Math.cos(azimuth), rotAxis);
  43. Cartesian2.Cartesian3.multiplyByScalar(northVec, Math.sin(azimuth), tempVec);
  44. Cartesian2.Cartesian3.add(rotAxis, tempVec, rotAxis);
  45. var cosThetaSquared = Math.cos(theta);
  46. cosThetaSquared = cosThetaSquared * cosThetaSquared;
  47. var sinThetaSquared = Math.sin(theta);
  48. sinThetaSquared = sinThetaSquared * sinThetaSquared;
  49. var radius = ab / Math.sqrt(bSqr * cosThetaSquared + aSqr * sinThetaSquared);
  50. var angle = radius / mag;
  51. // Create the quaternion to rotate the position vector to the boundary of the ellipse.
  52. Transforms.Quaternion.fromAxisAngle(rotAxis, angle, unitQuat);
  53. Transforms.Matrix3.fromQuaternion(unitQuat, rotMtx);
  54. Transforms.Matrix3.multiplyByVector(rotMtx, unitPos, result);
  55. Cartesian2.Cartesian3.normalize(result, result);
  56. Cartesian2.Cartesian3.multiplyByScalar(result, mag, result);
  57. return result;
  58. }
  59. var scratchCartesian1 = new Cartesian2.Cartesian3();
  60. var scratchCartesian2 = new Cartesian2.Cartesian3();
  61. var scratchCartesian3 = new Cartesian2.Cartesian3();
  62. var scratchNormal = new Cartesian2.Cartesian3();
  63. /**
  64. * Returns the positions raised to the given heights
  65. * @private
  66. */
  67. EllipseGeometryLibrary.raisePositionsToHeight = function (
  68. positions,
  69. options,
  70. extrude
  71. ) {
  72. var ellipsoid = options.ellipsoid;
  73. var height = options.height;
  74. var extrudedHeight = options.extrudedHeight;
  75. var size = extrude ? (positions.length / 3) * 2 : positions.length / 3;
  76. var finalPositions = new Float64Array(size * 3);
  77. var length = positions.length;
  78. var bottomOffset = extrude ? length : 0;
  79. for (var i = 0; i < length; i += 3) {
  80. var i1 = i + 1;
  81. var i2 = i + 2;
  82. var position = Cartesian2.Cartesian3.fromArray(positions, i, scratchCartesian1);
  83. ellipsoid.scaleToGeodeticSurface(position, position);
  84. var extrudedPosition = Cartesian2.Cartesian3.clone(position, scratchCartesian2);
  85. var normal = ellipsoid.geodeticSurfaceNormal(position, scratchNormal);
  86. var scaledNormal = Cartesian2.Cartesian3.multiplyByScalar(
  87. normal,
  88. height,
  89. scratchCartesian3
  90. );
  91. Cartesian2.Cartesian3.add(position, scaledNormal, position);
  92. if (extrude) {
  93. Cartesian2.Cartesian3.multiplyByScalar(normal, extrudedHeight, scaledNormal);
  94. Cartesian2.Cartesian3.add(extrudedPosition, scaledNormal, extrudedPosition);
  95. finalPositions[i + bottomOffset] = extrudedPosition.x;
  96. finalPositions[i1 + bottomOffset] = extrudedPosition.y;
  97. finalPositions[i2 + bottomOffset] = extrudedPosition.z;
  98. }
  99. finalPositions[i] = position.x;
  100. finalPositions[i1] = position.y;
  101. finalPositions[i2] = position.z;
  102. }
  103. return finalPositions;
  104. };
  105. var unitPosScratch = new Cartesian2.Cartesian3();
  106. var eastVecScratch = new Cartesian2.Cartesian3();
  107. var northVecScratch = new Cartesian2.Cartesian3();
  108. /**
  109. * Returns an array of positions that make up the ellipse.
  110. * @private
  111. */
  112. EllipseGeometryLibrary.computeEllipsePositions = function (
  113. options,
  114. addFillPositions,
  115. addEdgePositions
  116. ) {
  117. var semiMinorAxis = options.semiMinorAxis;
  118. var semiMajorAxis = options.semiMajorAxis;
  119. var rotation = options.rotation;
  120. var center = options.center;
  121. // Computing the arc-length of the ellipse is too expensive to be practical. Estimating it using the
  122. // arc length of the sphere is too inaccurate and creates sharp edges when either the semi-major or
  123. // semi-minor axis is much bigger than the other. Instead, scale the angle delta to make
  124. // the distance along the ellipse boundary more closely match the granularity.
  125. var granularity = options.granularity * 8.0;
  126. var aSqr = semiMinorAxis * semiMinorAxis;
  127. var bSqr = semiMajorAxis * semiMajorAxis;
  128. var ab = semiMajorAxis * semiMinorAxis;
  129. var mag = Cartesian2.Cartesian3.magnitude(center);
  130. var unitPos = Cartesian2.Cartesian3.normalize(center, unitPosScratch);
  131. var eastVec = Cartesian2.Cartesian3.cross(Cartesian2.Cartesian3.UNIT_Z, center, eastVecScratch);
  132. eastVec = Cartesian2.Cartesian3.normalize(eastVec, eastVec);
  133. var northVec = Cartesian2.Cartesian3.cross(unitPos, eastVec, northVecScratch);
  134. // The number of points in the first quadrant
  135. var numPts = 1 + Math.ceil(_Math.CesiumMath.PI_OVER_TWO / granularity);
  136. var deltaTheta = _Math.CesiumMath.PI_OVER_TWO / (numPts - 1);
  137. var theta = _Math.CesiumMath.PI_OVER_TWO - numPts * deltaTheta;
  138. if (theta < 0.0) {
  139. numPts -= Math.ceil(Math.abs(theta) / deltaTheta);
  140. }
  141. // If the number of points were three, the ellipse
  142. // would be tessellated like below:
  143. //
  144. // *---*
  145. // / | \ | \
  146. // *---*---*---*
  147. // / | \ | \ | \ | \
  148. // / .*---*---*---*. \
  149. // * ` | \ | \ | \ | `*
  150. // \`.*---*---*---*.`/
  151. // \ | \ | \ | \ | /
  152. // *---*---*---*
  153. // \ | \ | /
  154. // *---*
  155. // The first and last column have one position and fan to connect to the adjacent column.
  156. // Each other vertical column contains an even number of positions.
  157. var size = 2 * (numPts * (numPts + 2));
  158. var positions = addFillPositions ? new Array(size * 3) : undefined;
  159. var positionIndex = 0;
  160. var position = scratchCartesian1;
  161. var reflectedPosition = scratchCartesian2;
  162. var outerPositionsLength = numPts * 4 * 3;
  163. var outerRightIndex = outerPositionsLength - 1;
  164. var outerLeftIndex = 0;
  165. var outerPositions = addEdgePositions
  166. ? new Array(outerPositionsLength)
  167. : undefined;
  168. var i;
  169. var j;
  170. var numInterior;
  171. var t;
  172. var interiorPosition;
  173. // Compute points in the 'eastern' half of the ellipse
  174. theta = _Math.CesiumMath.PI_OVER_TWO;
  175. position = pointOnEllipsoid(
  176. theta,
  177. rotation,
  178. northVec,
  179. eastVec,
  180. aSqr,
  181. ab,
  182. bSqr,
  183. mag,
  184. unitPos,
  185. position
  186. );
  187. if (addFillPositions) {
  188. positions[positionIndex++] = position.x;
  189. positions[positionIndex++] = position.y;
  190. positions[positionIndex++] = position.z;
  191. }
  192. if (addEdgePositions) {
  193. outerPositions[outerRightIndex--] = position.z;
  194. outerPositions[outerRightIndex--] = position.y;
  195. outerPositions[outerRightIndex--] = position.x;
  196. }
  197. theta = _Math.CesiumMath.PI_OVER_TWO - deltaTheta;
  198. for (i = 1; i < numPts + 1; ++i) {
  199. position = pointOnEllipsoid(
  200. theta,
  201. rotation,
  202. northVec,
  203. eastVec,
  204. aSqr,
  205. ab,
  206. bSqr,
  207. mag,
  208. unitPos,
  209. position
  210. );
  211. reflectedPosition = pointOnEllipsoid(
  212. Math.PI - theta,
  213. rotation,
  214. northVec,
  215. eastVec,
  216. aSqr,
  217. ab,
  218. bSqr,
  219. mag,
  220. unitPos,
  221. reflectedPosition
  222. );
  223. if (addFillPositions) {
  224. positions[positionIndex++] = position.x;
  225. positions[positionIndex++] = position.y;
  226. positions[positionIndex++] = position.z;
  227. numInterior = 2 * i + 2;
  228. for (j = 1; j < numInterior - 1; ++j) {
  229. t = j / (numInterior - 1);
  230. interiorPosition = Cartesian2.Cartesian3.lerp(
  231. position,
  232. reflectedPosition,
  233. t,
  234. scratchCartesian3
  235. );
  236. positions[positionIndex++] = interiorPosition.x;
  237. positions[positionIndex++] = interiorPosition.y;
  238. positions[positionIndex++] = interiorPosition.z;
  239. }
  240. positions[positionIndex++] = reflectedPosition.x;
  241. positions[positionIndex++] = reflectedPosition.y;
  242. positions[positionIndex++] = reflectedPosition.z;
  243. }
  244. if (addEdgePositions) {
  245. outerPositions[outerRightIndex--] = position.z;
  246. outerPositions[outerRightIndex--] = position.y;
  247. outerPositions[outerRightIndex--] = position.x;
  248. outerPositions[outerLeftIndex++] = reflectedPosition.x;
  249. outerPositions[outerLeftIndex++] = reflectedPosition.y;
  250. outerPositions[outerLeftIndex++] = reflectedPosition.z;
  251. }
  252. theta = _Math.CesiumMath.PI_OVER_TWO - (i + 1) * deltaTheta;
  253. }
  254. // Compute points in the 'western' half of the ellipse
  255. for (i = numPts; i > 1; --i) {
  256. theta = _Math.CesiumMath.PI_OVER_TWO - (i - 1) * deltaTheta;
  257. position = pointOnEllipsoid(
  258. -theta,
  259. rotation,
  260. northVec,
  261. eastVec,
  262. aSqr,
  263. ab,
  264. bSqr,
  265. mag,
  266. unitPos,
  267. position
  268. );
  269. reflectedPosition = pointOnEllipsoid(
  270. theta + Math.PI,
  271. rotation,
  272. northVec,
  273. eastVec,
  274. aSqr,
  275. ab,
  276. bSqr,
  277. mag,
  278. unitPos,
  279. reflectedPosition
  280. );
  281. if (addFillPositions) {
  282. positions[positionIndex++] = position.x;
  283. positions[positionIndex++] = position.y;
  284. positions[positionIndex++] = position.z;
  285. numInterior = 2 * (i - 1) + 2;
  286. for (j = 1; j < numInterior - 1; ++j) {
  287. t = j / (numInterior - 1);
  288. interiorPosition = Cartesian2.Cartesian3.lerp(
  289. position,
  290. reflectedPosition,
  291. t,
  292. scratchCartesian3
  293. );
  294. positions[positionIndex++] = interiorPosition.x;
  295. positions[positionIndex++] = interiorPosition.y;
  296. positions[positionIndex++] = interiorPosition.z;
  297. }
  298. positions[positionIndex++] = reflectedPosition.x;
  299. positions[positionIndex++] = reflectedPosition.y;
  300. positions[positionIndex++] = reflectedPosition.z;
  301. }
  302. if (addEdgePositions) {
  303. outerPositions[outerRightIndex--] = position.z;
  304. outerPositions[outerRightIndex--] = position.y;
  305. outerPositions[outerRightIndex--] = position.x;
  306. outerPositions[outerLeftIndex++] = reflectedPosition.x;
  307. outerPositions[outerLeftIndex++] = reflectedPosition.y;
  308. outerPositions[outerLeftIndex++] = reflectedPosition.z;
  309. }
  310. }
  311. theta = _Math.CesiumMath.PI_OVER_TWO;
  312. position = pointOnEllipsoid(
  313. -theta,
  314. rotation,
  315. northVec,
  316. eastVec,
  317. aSqr,
  318. ab,
  319. bSqr,
  320. mag,
  321. unitPos,
  322. position
  323. );
  324. var r = {};
  325. if (addFillPositions) {
  326. positions[positionIndex++] = position.x;
  327. positions[positionIndex++] = position.y;
  328. positions[positionIndex++] = position.z;
  329. r.positions = positions;
  330. r.numPts = numPts;
  331. }
  332. if (addEdgePositions) {
  333. outerPositions[outerRightIndex--] = position.z;
  334. outerPositions[outerRightIndex--] = position.y;
  335. outerPositions[outerRightIndex--] = position.x;
  336. r.outerPositions = outerPositions;
  337. }
  338. return r;
  339. };
  340. exports.EllipseGeometryLibrary = EllipseGeometryLibrary;
  341. });
  342. //# sourceMappingURL=EllipseGeometryLibrary-12b8d523.js.map