/** * Cesium - https://github.com/CesiumGS/cesium * * Copyright 2011-2020 Cesium Contributors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Columbus View (Pat. Pend.) * * Portions licensed separately. * See https://github.com/CesiumGS/cesium/blob/master/LICENSE.md for full licensing details. */ define(['exports', './when-54c2dc71', './Check-6c0211bc', './Math-1124a290', './Cartesian2-33d2657c', './Transforms-8be64844', './ComponentDatatype-a26dd044', './AttributeCompression-75249b5e'], function (exports, when, Check, _Math, Cartesian2, Transforms, ComponentDatatype, AttributeCompression) { 'use strict'; /** * Determine whether or not other objects are visible or hidden behind the visible horizon defined by * an {@link Ellipsoid} and a camera position. The ellipsoid is assumed to be located at the * origin of the coordinate system. This class uses the algorithm described in the * {@link https://cesium.com/blog/2013/04/25/Horizon-culling/|Horizon Culling} blog post. * * @alias EllipsoidalOccluder * * @param {Ellipsoid} ellipsoid The ellipsoid to use as an occluder. * @param {Cartesian3} [cameraPosition] The coordinate of the viewer/camera. If this parameter is not * specified, {@link EllipsoidalOccluder#cameraPosition} must be called before * testing visibility. * * @constructor * * @example * // Construct an ellipsoidal occluder with radii 1.0, 1.1, and 0.9. * var cameraPosition = new Cesium.Cartesian3(5.0, 6.0, 7.0); * var occluderEllipsoid = new Cesium.Ellipsoid(1.0, 1.1, 0.9); * var occluder = new Cesium.EllipsoidalOccluder(occluderEllipsoid, cameraPosition); * * @private */ function EllipsoidalOccluder(ellipsoid, cameraPosition) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("ellipsoid", ellipsoid); //>>includeEnd('debug'); this._ellipsoid = ellipsoid; this._cameraPosition = new Cartesian2.Cartesian3(); this._cameraPositionInScaledSpace = new Cartesian2.Cartesian3(); this._distanceToLimbInScaledSpaceSquared = 0.0; // cameraPosition fills in the above values if (when.defined(cameraPosition)) { this.cameraPosition = cameraPosition; } } Object.defineProperties(EllipsoidalOccluder.prototype, { /** * Gets the occluding ellipsoid. * @memberof EllipsoidalOccluder.prototype * @type {Ellipsoid} */ ellipsoid: { get: function () { return this._ellipsoid; }, }, /** * Gets or sets the position of the camera. * @memberof EllipsoidalOccluder.prototype * @type {Cartesian3} */ cameraPosition: { get: function () { return this._cameraPosition; }, set: function (cameraPosition) { // See https://cesium.com/blog/2013/04/25/Horizon-culling/ var ellipsoid = this._ellipsoid; var cv = ellipsoid.transformPositionToScaledSpace( cameraPosition, this._cameraPositionInScaledSpace ); var vhMagnitudeSquared = Cartesian2.Cartesian3.magnitudeSquared(cv) - 1.0; Cartesian2.Cartesian3.clone(cameraPosition, this._cameraPosition); this._cameraPositionInScaledSpace = cv; this._distanceToLimbInScaledSpaceSquared = vhMagnitudeSquared; }, }, }); var scratchCartesian = new Cartesian2.Cartesian3(); /** * Determines whether or not a point, the occludee, is hidden from view by the occluder. * * @param {Cartesian3} occludee The point to test for visibility. * @returns {Boolean} true if the occludee is visible; otherwise false. * * @example * var cameraPosition = new Cesium.Cartesian3(0, 0, 2.5); * var ellipsoid = new Cesium.Ellipsoid(1.0, 1.1, 0.9); * var occluder = new Cesium.EllipsoidalOccluder(ellipsoid, cameraPosition); * var point = new Cesium.Cartesian3(0, -3, -3); * occluder.isPointVisible(point); //returns true */ EllipsoidalOccluder.prototype.isPointVisible = function (occludee) { var ellipsoid = this._ellipsoid; var occludeeScaledSpacePosition = ellipsoid.transformPositionToScaledSpace( occludee, scratchCartesian ); return isScaledSpacePointVisible( occludeeScaledSpacePosition, this._cameraPositionInScaledSpace, this._distanceToLimbInScaledSpaceSquared ); }; /** * Determines whether or not a point expressed in the ellipsoid scaled space, is hidden from view by the * occluder. To transform a Cartesian X, Y, Z position in the coordinate system aligned with the ellipsoid * into the scaled space, call {@link Ellipsoid#transformPositionToScaledSpace}. * * @param {Cartesian3} occludeeScaledSpacePosition The point to test for visibility, represented in the scaled space. * @returns {Boolean} true if the occludee is visible; otherwise false. * * @example * var cameraPosition = new Cesium.Cartesian3(0, 0, 2.5); * var ellipsoid = new Cesium.Ellipsoid(1.0, 1.1, 0.9); * var occluder = new Cesium.EllipsoidalOccluder(ellipsoid, cameraPosition); * var point = new Cesium.Cartesian3(0, -3, -3); * var scaledSpacePoint = ellipsoid.transformPositionToScaledSpace(point); * occluder.isScaledSpacePointVisible(scaledSpacePoint); //returns true */ EllipsoidalOccluder.prototype.isScaledSpacePointVisible = function ( occludeeScaledSpacePosition ) { return isScaledSpacePointVisible( occludeeScaledSpacePosition, this._cameraPositionInScaledSpace, this._distanceToLimbInScaledSpaceSquared ); }; var scratchCameraPositionInScaledSpaceShrunk = new Cartesian2.Cartesian3(); /** * Similar to {@link EllipsoidalOccluder#isScaledSpacePointVisible} except tests against an * ellipsoid that has been shrunk by the minimum height when the minimum height is below * the ellipsoid. This is intended to be used with points generated by * {@link EllipsoidalOccluder#computeHorizonCullingPointPossiblyUnderEllipsoid} or * {@link EllipsoidalOccluder#computeHorizonCullingPointFromVerticesPossiblyUnderEllipsoid}. * * @param {Cartesian3} occludeeScaledSpacePosition The point to test for visibility, represented in the scaled space of the possibly-shrunk ellipsoid. * @returns {Boolean} true if the occludee is visible; otherwise false. */ EllipsoidalOccluder.prototype.isScaledSpacePointVisiblePossiblyUnderEllipsoid = function ( occludeeScaledSpacePosition, minimumHeight ) { var ellipsoid = this._ellipsoid; var vhMagnitudeSquared; var cv; if ( when.defined(minimumHeight) && minimumHeight < 0.0 && ellipsoid.minimumRadius > -minimumHeight ) { // This code is similar to the cameraPosition setter, but unrolled for performance because it will be called a lot. cv = scratchCameraPositionInScaledSpaceShrunk; cv.x = this._cameraPosition.x / (ellipsoid.radii.x + minimumHeight); cv.y = this._cameraPosition.y / (ellipsoid.radii.y + minimumHeight); cv.z = this._cameraPosition.z / (ellipsoid.radii.z + minimumHeight); vhMagnitudeSquared = cv.x * cv.x + cv.y * cv.y + cv.z * cv.z - 1.0; } else { cv = this._cameraPositionInScaledSpace; vhMagnitudeSquared = this._distanceToLimbInScaledSpaceSquared; } return isScaledSpacePointVisible( occludeeScaledSpacePosition, cv, vhMagnitudeSquared ); }; /** * Computes a point that can be used for horizon culling from a list of positions. If the point is below * the horizon, all of the positions are guaranteed to be below the horizon as well. The returned point * is expressed in the ellipsoid-scaled space and is suitable for use with * {@link EllipsoidalOccluder#isScaledSpacePointVisible}. * * @param {Cartesian3} directionToPoint The direction that the computed point will lie along. * A reasonable direction to use is the direction from the center of the ellipsoid to * the center of the bounding sphere computed from the positions. The direction need not * be normalized. * @param {Cartesian3[]} positions The positions from which to compute the horizon culling point. The positions * must be expressed in a reference frame centered at the ellipsoid and aligned with the * ellipsoid's axes. * @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance. * @returns {Cartesian3} The computed horizon culling point, expressed in the ellipsoid-scaled space. */ EllipsoidalOccluder.prototype.computeHorizonCullingPoint = function ( directionToPoint, positions, result ) { return computeHorizonCullingPointFromPositions( this._ellipsoid, directionToPoint, positions, result ); }; var scratchEllipsoidShrunk = Cartesian2.Ellipsoid.clone(Cartesian2.Ellipsoid.UNIT_SPHERE); /** * Similar to {@link EllipsoidalOccluder#computeHorizonCullingPoint} except computes the culling * point relative to an ellipsoid that has been shrunk by the minimum height when the minimum height is below * the ellipsoid. The returned point is expressed in the possibly-shrunk ellipsoid-scaled space and is suitable * for use with {@link EllipsoidalOccluder#isScaledSpacePointVisiblePossiblyUnderEllipsoid}. * * @param {Cartesian3} directionToPoint The direction that the computed point will lie along. * A reasonable direction to use is the direction from the center of the ellipsoid to * the center of the bounding sphere computed from the positions. The direction need not * be normalized. * @param {Cartesian3[]} positions The positions from which to compute the horizon culling point. The positions * must be expressed in a reference frame centered at the ellipsoid and aligned with the * ellipsoid's axes. * @param {Number} [minimumHeight] The minimum height of all positions. If this value is undefined, all positions are assumed to be above the ellipsoid. * @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance. * @returns {Cartesian3} The computed horizon culling point, expressed in the possibly-shrunk ellipsoid-scaled space. */ EllipsoidalOccluder.prototype.computeHorizonCullingPointPossiblyUnderEllipsoid = function ( directionToPoint, positions, minimumHeight, result ) { var possiblyShrunkEllipsoid = getPossiblyShrunkEllipsoid( this._ellipsoid, minimumHeight, scratchEllipsoidShrunk ); return computeHorizonCullingPointFromPositions( possiblyShrunkEllipsoid, directionToPoint, positions, result ); }; /** * Computes a point that can be used for horizon culling from a list of positions. If the point is below * the horizon, all of the positions are guaranteed to be below the horizon as well. The returned point * is expressed in the ellipsoid-scaled space and is suitable for use with * {@link EllipsoidalOccluder#isScaledSpacePointVisible}. * * @param {Cartesian3} directionToPoint The direction that the computed point will lie along. * A reasonable direction to use is the direction from the center of the ellipsoid to * the center of the bounding sphere computed from the positions. The direction need not * be normalized. * @param {Number[]} vertices The vertices from which to compute the horizon culling point. The positions * must be expressed in a reference frame centered at the ellipsoid and aligned with the * ellipsoid's axes. * @param {Number} [stride=3] * @param {Cartesian3} [center=Cartesian3.ZERO] * @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance. * @returns {Cartesian3} The computed horizon culling point, expressed in the ellipsoid-scaled space. */ EllipsoidalOccluder.prototype.computeHorizonCullingPointFromVertices = function ( directionToPoint, vertices, stride, center, result ) { return computeHorizonCullingPointFromVertices( this._ellipsoid, directionToPoint, vertices, stride, center, result ); }; /** * Similar to {@link EllipsoidalOccluder#computeHorizonCullingPointFromVertices} except computes the culling * point relative to an ellipsoid that has been shrunk by the minimum height when the minimum height is below * the ellipsoid. The returned point is expressed in the possibly-shrunk ellipsoid-scaled space and is suitable * for use with {@link EllipsoidalOccluder#isScaledSpacePointVisiblePossiblyUnderEllipsoid}. * * @param {Cartesian3} directionToPoint The direction that the computed point will lie along. * A reasonable direction to use is the direction from the center of the ellipsoid to * the center of the bounding sphere computed from the positions. The direction need not * be normalized. * @param {Number[]} vertices The vertices from which to compute the horizon culling point. The positions * must be expressed in a reference frame centered at the ellipsoid and aligned with the * ellipsoid's axes. * @param {Number} [stride=3] * @param {Cartesian3} [center=Cartesian3.ZERO] * @param {Number} [minimumHeight] The minimum height of all vertices. If this value is undefined, all vertices are assumed to be above the ellipsoid. * @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance. * @returns {Cartesian3} The computed horizon culling point, expressed in the possibly-shrunk ellipsoid-scaled space. */ EllipsoidalOccluder.prototype.computeHorizonCullingPointFromVerticesPossiblyUnderEllipsoid = function ( directionToPoint, vertices, stride, center, minimumHeight, result ) { var possiblyShrunkEllipsoid = getPossiblyShrunkEllipsoid( this._ellipsoid, minimumHeight, scratchEllipsoidShrunk ); return computeHorizonCullingPointFromVertices( possiblyShrunkEllipsoid, directionToPoint, vertices, stride, center, result ); }; var subsampleScratch = []; /** * Computes a point that can be used for horizon culling of a rectangle. If the point is below * the horizon, the ellipsoid-conforming rectangle is guaranteed to be below the horizon as well. * The returned point is expressed in the ellipsoid-scaled space and is suitable for use with * {@link EllipsoidalOccluder#isScaledSpacePointVisible}. * * @param {Rectangle} rectangle The rectangle for which to compute the horizon culling point. * @param {Ellipsoid} ellipsoid The ellipsoid on which the rectangle is defined. This may be different from * the ellipsoid used by this instance for occlusion testing. * @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance. * @returns {Cartesian3} The computed horizon culling point, expressed in the ellipsoid-scaled space. */ EllipsoidalOccluder.prototype.computeHorizonCullingPointFromRectangle = function ( rectangle, ellipsoid, result ) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("rectangle", rectangle); //>>includeEnd('debug'); var positions = Cartesian2.Rectangle.subsample( rectangle, ellipsoid, 0.0, subsampleScratch ); var bs = Transforms.BoundingSphere.fromPoints(positions); // If the bounding sphere center is too close to the center of the occluder, it doesn't make // sense to try to horizon cull it. if (Cartesian2.Cartesian3.magnitude(bs.center) < 0.1 * ellipsoid.minimumRadius) { return undefined; } return this.computeHorizonCullingPoint(bs.center, positions, result); }; var scratchEllipsoidShrunkRadii = new Cartesian2.Cartesian3(); function getPossiblyShrunkEllipsoid(ellipsoid, minimumHeight, result) { if ( when.defined(minimumHeight) && minimumHeight < 0.0 && ellipsoid.minimumRadius > -minimumHeight ) { var ellipsoidShrunkRadii = Cartesian2.Cartesian3.fromElements( ellipsoid.radii.x + minimumHeight, ellipsoid.radii.y + minimumHeight, ellipsoid.radii.z + minimumHeight, scratchEllipsoidShrunkRadii ); ellipsoid = Cartesian2.Ellipsoid.fromCartesian3(ellipsoidShrunkRadii, result); } return ellipsoid; } function computeHorizonCullingPointFromPositions( ellipsoid, directionToPoint, positions, result ) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("directionToPoint", directionToPoint); Check.Check.defined("positions", positions); //>>includeEnd('debug'); if (!when.defined(result)) { result = new Cartesian2.Cartesian3(); } var scaledSpaceDirectionToPoint = computeScaledSpaceDirectionToPoint( ellipsoid, directionToPoint ); var resultMagnitude = 0.0; for (var i = 0, len = positions.length; i < len; ++i) { var position = positions[i]; var candidateMagnitude = computeMagnitude( ellipsoid, position, scaledSpaceDirectionToPoint ); if (candidateMagnitude < 0.0) { // all points should face the same direction, but this one doesn't, so return undefined return undefined; } resultMagnitude = Math.max(resultMagnitude, candidateMagnitude); } return magnitudeToPoint(scaledSpaceDirectionToPoint, resultMagnitude, result); } var positionScratch = new Cartesian2.Cartesian3(); function computeHorizonCullingPointFromVertices( ellipsoid, directionToPoint, vertices, stride, center, result ) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object("directionToPoint", directionToPoint); Check.Check.defined("vertices", vertices); Check.Check.typeOf.number("stride", stride); //>>includeEnd('debug'); if (!when.defined(result)) { result = new Cartesian2.Cartesian3(); } stride = when.defaultValue(stride, 3); center = when.defaultValue(center, Cartesian2.Cartesian3.ZERO); var scaledSpaceDirectionToPoint = computeScaledSpaceDirectionToPoint( ellipsoid, directionToPoint ); var resultMagnitude = 0.0; for (var i = 0, len = vertices.length; i < len; i += stride) { positionScratch.x = vertices[i] + center.x; positionScratch.y = vertices[i + 1] + center.y; positionScratch.z = vertices[i + 2] + center.z; var candidateMagnitude = computeMagnitude( ellipsoid, positionScratch, scaledSpaceDirectionToPoint ); if (candidateMagnitude < 0.0) { // all points should face the same direction, but this one doesn't, so return undefined return undefined; } resultMagnitude = Math.max(resultMagnitude, candidateMagnitude); } return magnitudeToPoint(scaledSpaceDirectionToPoint, resultMagnitude, result); } function isScaledSpacePointVisible( occludeeScaledSpacePosition, cameraPositionInScaledSpace, distanceToLimbInScaledSpaceSquared ) { // See https://cesium.com/blog/2013/04/25/Horizon-culling/ var cv = cameraPositionInScaledSpace; var vhMagnitudeSquared = distanceToLimbInScaledSpaceSquared; var vt = Cartesian2.Cartesian3.subtract( occludeeScaledSpacePosition, cv, scratchCartesian ); var vtDotVc = -Cartesian2.Cartesian3.dot(vt, cv); // If vhMagnitudeSquared < 0 then we are below the surface of the ellipsoid and // in this case, set the culling plane to be on V. var isOccluded = vhMagnitudeSquared < 0 ? vtDotVc > 0 : vtDotVc > vhMagnitudeSquared && (vtDotVc * vtDotVc) / Cartesian2.Cartesian3.magnitudeSquared(vt) > vhMagnitudeSquared; return !isOccluded; } var scaledSpaceScratch = new Cartesian2.Cartesian3(); var directionScratch = new Cartesian2.Cartesian3(); function computeMagnitude(ellipsoid, position, scaledSpaceDirectionToPoint) { var scaledSpacePosition = ellipsoid.transformPositionToScaledSpace( position, scaledSpaceScratch ); var magnitudeSquared = Cartesian2.Cartesian3.magnitudeSquared(scaledSpacePosition); var magnitude = Math.sqrt(magnitudeSquared); var direction = Cartesian2.Cartesian3.divideByScalar( scaledSpacePosition, magnitude, directionScratch ); // For the purpose of this computation, points below the ellipsoid are consider to be on it instead. magnitudeSquared = Math.max(1.0, magnitudeSquared); magnitude = Math.max(1.0, magnitude); var cosAlpha = Cartesian2.Cartesian3.dot(direction, scaledSpaceDirectionToPoint); var sinAlpha = Cartesian2.Cartesian3.magnitude( Cartesian2.Cartesian3.cross(direction, scaledSpaceDirectionToPoint, direction) ); var cosBeta = 1.0 / magnitude; var sinBeta = Math.sqrt(magnitudeSquared - 1.0) * cosBeta; return 1.0 / (cosAlpha * cosBeta - sinAlpha * sinBeta); } function magnitudeToPoint( scaledSpaceDirectionToPoint, resultMagnitude, result ) { // The horizon culling point is undefined if there were no positions from which to compute it, // the directionToPoint is pointing opposite all of the positions, or if we computed NaN or infinity. if ( resultMagnitude <= 0.0 || resultMagnitude === 1.0 / 0.0 || resultMagnitude !== resultMagnitude ) { return undefined; } return Cartesian2.Cartesian3.multiplyByScalar( scaledSpaceDirectionToPoint, resultMagnitude, result ); } var directionToPointScratch = new Cartesian2.Cartesian3(); function computeScaledSpaceDirectionToPoint(ellipsoid, directionToPoint) { if (Cartesian2.Cartesian3.equals(directionToPoint, Cartesian2.Cartesian3.ZERO)) { return directionToPoint; } ellipsoid.transformPositionToScaledSpace( directionToPoint, directionToPointScratch ); return Cartesian2.Cartesian3.normalize(directionToPointScratch, directionToPointScratch); } /** * This enumerated type is used to determine how the vertices of the terrain mesh are compressed. * * @enum {Number} * * @private */ var TerrainQuantization = { /** * The vertices are not compressed. * * @type {Number} * @constant */ NONE: 0, /** * The vertices are compressed to 12 bits. * * @type {Number} * @constant */ BITS12: 1, }; var TerrainQuantization$1 = Object.freeze(TerrainQuantization); var cartesian3Scratch = new Cartesian2.Cartesian3(); var cartesian3DimScratch = new Cartesian2.Cartesian3(); var cartesian2Scratch = new Cartesian2.Cartesian2(); var matrix4Scratch = new Transforms.Matrix4(); var matrix4Scratch2 = new Transforms.Matrix4(); var SHIFT_LEFT_12 = Math.pow(2.0, 12.0); /** * Data used to quantize and pack the terrain mesh. The position can be unpacked for picking and all attributes * are unpacked in the vertex shader. * * @alias TerrainEncoding * @constructor * * @param {AxisAlignedBoundingBox} axisAlignedBoundingBox The bounds of the tile in the east-north-up coordinates at the tiles center. * @param {Number} minimumHeight The minimum height. * @param {Number} maximumHeight The maximum height. * @param {Matrix4} fromENU The east-north-up to fixed frame matrix at the center of the terrain mesh. * @param {Boolean} hasVertexNormals If the mesh has vertex normals. * @param {Boolean} [hasWebMercatorT=false] true if the terrain data includes a Web Mercator texture coordinate; otherwise, false. * * @private */ function TerrainEncoding( axisAlignedBoundingBox, minimumHeight, maximumHeight, fromENU, hasVertexNormals, hasWebMercatorT ) { var quantization = TerrainQuantization$1.NONE; var center; var toENU; var matrix; if ( when.defined(axisAlignedBoundingBox) && when.defined(minimumHeight) && when.defined(maximumHeight) && when.defined(fromENU) ) { var minimum = axisAlignedBoundingBox.minimum; var maximum = axisAlignedBoundingBox.maximum; var dimensions = Cartesian2.Cartesian3.subtract( maximum, minimum, cartesian3DimScratch ); var hDim = maximumHeight - minimumHeight; var maxDim = Math.max(Cartesian2.Cartesian3.maximumComponent(dimensions), hDim); if (maxDim < SHIFT_LEFT_12 - 1.0) { quantization = TerrainQuantization$1.BITS12; } else { quantization = TerrainQuantization$1.NONE; } center = axisAlignedBoundingBox.center; toENU = Transforms.Matrix4.inverseTransformation(fromENU, new Transforms.Matrix4()); var translation = Cartesian2.Cartesian3.negate(minimum, cartesian3Scratch); Transforms.Matrix4.multiply( Transforms.Matrix4.fromTranslation(translation, matrix4Scratch), toENU, toENU ); var scale = cartesian3Scratch; scale.x = 1.0 / dimensions.x; scale.y = 1.0 / dimensions.y; scale.z = 1.0 / dimensions.z; Transforms.Matrix4.multiply(Transforms.Matrix4.fromScale(scale, matrix4Scratch), toENU, toENU); matrix = Transforms.Matrix4.clone(fromENU); Transforms.Matrix4.setTranslation(matrix, Cartesian2.Cartesian3.ZERO, matrix); fromENU = Transforms.Matrix4.clone(fromENU, new Transforms.Matrix4()); var translationMatrix = Transforms.Matrix4.fromTranslation(minimum, matrix4Scratch); var scaleMatrix = Transforms.Matrix4.fromScale(dimensions, matrix4Scratch2); var st = Transforms.Matrix4.multiply(translationMatrix, scaleMatrix, matrix4Scratch); Transforms.Matrix4.multiply(fromENU, st, fromENU); Transforms.Matrix4.multiply(matrix, st, matrix); } /** * How the vertices of the mesh were compressed. * @type {TerrainQuantization} */ this.quantization = quantization; /** * The minimum height of the tile including the skirts. * @type {Number} */ this.minimumHeight = minimumHeight; /** * The maximum height of the tile. * @type {Number} */ this.maximumHeight = maximumHeight; /** * The center of the tile. * @type {Cartesian3} */ this.center = center; /** * A matrix that takes a vertex from the tile, transforms it to east-north-up at the center and scales * it so each component is in the [0, 1] range. * @type {Matrix4} */ this.toScaledENU = toENU; /** * A matrix that restores a vertex transformed with toScaledENU back to the earth fixed reference frame * @type {Matrix4} */ this.fromScaledENU = fromENU; /** * The matrix used to decompress the terrain vertices in the shader for RTE rendering. * @type {Matrix4} */ this.matrix = matrix; /** * The terrain mesh contains normals. * @type {Boolean} */ this.hasVertexNormals = hasVertexNormals; /** * The terrain mesh contains a vertical texture coordinate following the Web Mercator projection. * @type {Boolean} */ this.hasWebMercatorT = when.defaultValue(hasWebMercatorT, false); } TerrainEncoding.prototype.encode = function ( vertexBuffer, bufferIndex, position, uv, height, normalToPack, webMercatorT ) { var u = uv.x; var v = uv.y; if (this.quantization === TerrainQuantization$1.BITS12) { position = Transforms.Matrix4.multiplyByPoint( this.toScaledENU, position, cartesian3Scratch ); position.x = _Math.CesiumMath.clamp(position.x, 0.0, 1.0); position.y = _Math.CesiumMath.clamp(position.y, 0.0, 1.0); position.z = _Math.CesiumMath.clamp(position.z, 0.0, 1.0); var hDim = this.maximumHeight - this.minimumHeight; var h = _Math.CesiumMath.clamp((height - this.minimumHeight) / hDim, 0.0, 1.0); Cartesian2.Cartesian2.fromElements(position.x, position.y, cartesian2Scratch); var compressed0 = AttributeCompression.AttributeCompression.compressTextureCoordinates( cartesian2Scratch ); Cartesian2.Cartesian2.fromElements(position.z, h, cartesian2Scratch); var compressed1 = AttributeCompression.AttributeCompression.compressTextureCoordinates( cartesian2Scratch ); Cartesian2.Cartesian2.fromElements(u, v, cartesian2Scratch); var compressed2 = AttributeCompression.AttributeCompression.compressTextureCoordinates( cartesian2Scratch ); vertexBuffer[bufferIndex++] = compressed0; vertexBuffer[bufferIndex++] = compressed1; vertexBuffer[bufferIndex++] = compressed2; if (this.hasWebMercatorT) { Cartesian2.Cartesian2.fromElements(webMercatorT, 0.0, cartesian2Scratch); var compressed3 = AttributeCompression.AttributeCompression.compressTextureCoordinates( cartesian2Scratch ); vertexBuffer[bufferIndex++] = compressed3; } } else { Cartesian2.Cartesian3.subtract(position, this.center, cartesian3Scratch); vertexBuffer[bufferIndex++] = cartesian3Scratch.x; vertexBuffer[bufferIndex++] = cartesian3Scratch.y; vertexBuffer[bufferIndex++] = cartesian3Scratch.z; vertexBuffer[bufferIndex++] = height; vertexBuffer[bufferIndex++] = u; vertexBuffer[bufferIndex++] = v; if (this.hasWebMercatorT) { vertexBuffer[bufferIndex++] = webMercatorT; } } if (this.hasVertexNormals) { vertexBuffer[bufferIndex++] = AttributeCompression.AttributeCompression.octPackFloat( normalToPack ); } return bufferIndex; }; TerrainEncoding.prototype.decodePosition = function (buffer, index, result) { if (!when.defined(result)) { result = new Cartesian2.Cartesian3(); } index *= this.getStride(); if (this.quantization === TerrainQuantization$1.BITS12) { var xy = AttributeCompression.AttributeCompression.decompressTextureCoordinates( buffer[index], cartesian2Scratch ); result.x = xy.x; result.y = xy.y; var zh = AttributeCompression.AttributeCompression.decompressTextureCoordinates( buffer[index + 1], cartesian2Scratch ); result.z = zh.x; return Transforms.Matrix4.multiplyByPoint(this.fromScaledENU, result, result); } result.x = buffer[index]; result.y = buffer[index + 1]; result.z = buffer[index + 2]; return Cartesian2.Cartesian3.add(result, this.center, result); }; TerrainEncoding.prototype.decodeTextureCoordinates = function ( buffer, index, result ) { if (!when.defined(result)) { result = new Cartesian2.Cartesian2(); } index *= this.getStride(); if (this.quantization === TerrainQuantization$1.BITS12) { return AttributeCompression.AttributeCompression.decompressTextureCoordinates( buffer[index + 2], result ); } return Cartesian2.Cartesian2.fromElements(buffer[index + 4], buffer[index + 5], result); }; TerrainEncoding.prototype.decodeHeight = function (buffer, index) { index *= this.getStride(); if (this.quantization === TerrainQuantization$1.BITS12) { var zh = AttributeCompression.AttributeCompression.decompressTextureCoordinates( buffer[index + 1], cartesian2Scratch ); return ( zh.y * (this.maximumHeight - this.minimumHeight) + this.minimumHeight ); } return buffer[index + 3]; }; TerrainEncoding.prototype.decodeWebMercatorT = function (buffer, index) { index *= this.getStride(); if (this.quantization === TerrainQuantization$1.BITS12) { return AttributeCompression.AttributeCompression.decompressTextureCoordinates( buffer[index + 3], cartesian2Scratch ).x; } return buffer[index + 6]; }; TerrainEncoding.prototype.getOctEncodedNormal = function ( buffer, index, result ) { var stride = this.getStride(); index = (index + 1) * stride - 1; var temp = buffer[index] / 256.0; var x = Math.floor(temp); var y = (temp - x) * 256.0; return Cartesian2.Cartesian2.fromElements(x, y, result); }; TerrainEncoding.prototype.getStride = function () { var vertexStride; switch (this.quantization) { case TerrainQuantization$1.BITS12: vertexStride = 3; break; default: vertexStride = 6; } if (this.hasWebMercatorT) { ++vertexStride; } if (this.hasVertexNormals) { ++vertexStride; } return vertexStride; }; var attributesNone = { position3DAndHeight: 0, textureCoordAndEncodedNormals: 1, }; var attributes = { compressed0: 0, compressed1: 1, }; TerrainEncoding.prototype.getAttributes = function (buffer) { var datatype = ComponentDatatype.ComponentDatatype.FLOAT; var sizeInBytes = ComponentDatatype.ComponentDatatype.getSizeInBytes(datatype); var stride; if (this.quantization === TerrainQuantization$1.NONE) { var position3DAndHeightLength = 4; var numTexCoordComponents = 2; if (this.hasWebMercatorT) { ++numTexCoordComponents; } if (this.hasVertexNormals) { ++numTexCoordComponents; } stride = (position3DAndHeightLength + numTexCoordComponents) * sizeInBytes; return [ { index: attributesNone.position3DAndHeight, vertexBuffer: buffer, componentDatatype: datatype, componentsPerAttribute: position3DAndHeightLength, offsetInBytes: 0, strideInBytes: stride, }, { index: attributesNone.textureCoordAndEncodedNormals, vertexBuffer: buffer, componentDatatype: datatype, componentsPerAttribute: numTexCoordComponents, offsetInBytes: position3DAndHeightLength * sizeInBytes, strideInBytes: stride, }, ]; } var numCompressed0 = 3; var numCompressed1 = 0; if (this.hasWebMercatorT || this.hasVertexNormals) { ++numCompressed0; } if (this.hasWebMercatorT && this.hasVertexNormals) { ++numCompressed1; stride = (numCompressed0 + numCompressed1) * sizeInBytes; return [ { index: attributes.compressed0, vertexBuffer: buffer, componentDatatype: datatype, componentsPerAttribute: numCompressed0, offsetInBytes: 0, strideInBytes: stride, }, { index: attributes.compressed1, vertexBuffer: buffer, componentDatatype: datatype, componentsPerAttribute: numCompressed1, offsetInBytes: numCompressed0 * sizeInBytes, strideInBytes: stride, }, ]; } return [ { index: attributes.compressed0, vertexBuffer: buffer, componentDatatype: datatype, componentsPerAttribute: numCompressed0, }, ]; }; TerrainEncoding.prototype.getAttributeLocations = function () { if (this.quantization === TerrainQuantization$1.NONE) { return attributesNone; } return attributes; }; TerrainEncoding.clone = function (encoding, result) { if (!when.defined(result)) { result = new TerrainEncoding(); } result.quantization = encoding.quantization; result.minimumHeight = encoding.minimumHeight; result.maximumHeight = encoding.maximumHeight; result.center = Cartesian2.Cartesian3.clone(encoding.center); result.toScaledENU = Transforms.Matrix4.clone(encoding.toScaledENU); result.fromScaledENU = Transforms.Matrix4.clone(encoding.fromScaledENU); result.matrix = Transforms.Matrix4.clone(encoding.matrix); result.hasVertexNormals = encoding.hasVertexNormals; result.hasWebMercatorT = encoding.hasWebMercatorT; return result; }; exports.EllipsoidalOccluder = EllipsoidalOccluder; exports.TerrainEncoding = TerrainEncoding; }); //# sourceMappingURL=TerrainEncoding-6954276f.js.map