/** * Cesium - https://github.com/CesiumGS/cesium * * Copyright 2011-2020 Cesium Contributors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Columbus View (Pat. Pend.) * * Portions licensed separately. * See https://github.com/CesiumGS/cesium/blob/master/LICENSE.md for full licensing details. */ define(['exports', './when-54c2dc71', './Math-1124a290', './Cartesian2-33d2657c', './Transforms-8be64844', './ComponentDatatype-a26dd044', './GeometryAttribute-e9a8b203', './GeometryAttributes-4fcfcf40', './GeometryPipeline-466ad516', './IndexDatatype-25023891', './arrayRemoveDuplicates-0263f42c', './ArcType-dc1c5aee', './EllipsoidRhumbLine-5f1492e5', './PolygonPipeline-9f9b7763'], function (exports, when, _Math, Cartesian2, Transforms, ComponentDatatype, GeometryAttribute, GeometryAttributes, GeometryPipeline, IndexDatatype, arrayRemoveDuplicates, ArcType, EllipsoidRhumbLine, PolygonPipeline) { 'use strict'; /** * A queue that can enqueue items at the end, and dequeue items from the front. * * @alias Queue * @constructor */ function Queue() { this._array = []; this._offset = 0; this._length = 0; } Object.defineProperties(Queue.prototype, { /** * The length of the queue. * * @memberof Queue.prototype * * @type {Number} * @readonly */ length: { get: function () { return this._length; }, }, }); /** * Enqueues the specified item. * * @param {*} item The item to enqueue. */ Queue.prototype.enqueue = function (item) { this._array.push(item); this._length++; }; /** * Dequeues an item. Returns undefined if the queue is empty. * * @returns {*} The the dequeued item. */ Queue.prototype.dequeue = function () { if (this._length === 0) { return undefined; } var array = this._array; var offset = this._offset; var item = array[offset]; array[offset] = undefined; offset++; if (offset > 10 && offset * 2 > array.length) { //compact array this._array = array.slice(offset); offset = 0; } this._offset = offset; this._length--; return item; }; /** * Returns the item at the front of the queue. Returns undefined if the queue is empty. * * @returns {*} The item at the front of the queue. */ Queue.prototype.peek = function () { if (this._length === 0) { return undefined; } return this._array[this._offset]; }; /** * Check whether this queue contains the specified item. * * @param {*} item The item to search for. */ Queue.prototype.contains = function (item) { return this._array.indexOf(item) !== -1; }; /** * Remove all items from the queue. */ Queue.prototype.clear = function () { this._array.length = this._offset = this._length = 0; }; /** * Sort the items in the queue in-place. * * @param {Queue.Comparator} compareFunction A function that defines the sort order. */ Queue.prototype.sort = function (compareFunction) { if (this._offset > 0) { //compact array this._array = this._array.slice(this._offset); this._offset = 0; } this._array.sort(compareFunction); }; /** * @private */ var PolygonGeometryLibrary = {}; PolygonGeometryLibrary.computeHierarchyPackedLength = function ( polygonHierarchy ) { var numComponents = 0; var stack = [polygonHierarchy]; while (stack.length > 0) { var hierarchy = stack.pop(); if (!when.defined(hierarchy)) { continue; } numComponents += 2; var positions = hierarchy.positions; var holes = hierarchy.holes; if (when.defined(positions)) { numComponents += positions.length * Cartesian2.Cartesian3.packedLength; } if (when.defined(holes)) { var length = holes.length; for (var i = 0; i < length; ++i) { stack.push(holes[i]); } } } return numComponents; }; PolygonGeometryLibrary.packPolygonHierarchy = function ( polygonHierarchy, array, startingIndex ) { var stack = [polygonHierarchy]; while (stack.length > 0) { var hierarchy = stack.pop(); if (!when.defined(hierarchy)) { continue; } var positions = hierarchy.positions; var holes = hierarchy.holes; array[startingIndex++] = when.defined(positions) ? positions.length : 0; array[startingIndex++] = when.defined(holes) ? holes.length : 0; if (when.defined(positions)) { var positionsLength = positions.length; for (var i = 0; i < positionsLength; ++i, startingIndex += 3) { Cartesian2.Cartesian3.pack(positions[i], array, startingIndex); } } if (when.defined(holes)) { var holesLength = holes.length; for (var j = 0; j < holesLength; ++j) { stack.push(holes[j]); } } } return startingIndex; }; PolygonGeometryLibrary.unpackPolygonHierarchy = function ( array, startingIndex ) { var positionsLength = array[startingIndex++]; var holesLength = array[startingIndex++]; var positions = new Array(positionsLength); var holes = holesLength > 0 ? new Array(holesLength) : undefined; for ( var i = 0; i < positionsLength; ++i, startingIndex += Cartesian2.Cartesian3.packedLength ) { positions[i] = Cartesian2.Cartesian3.unpack(array, startingIndex); } for (var j = 0; j < holesLength; ++j) { holes[j] = PolygonGeometryLibrary.unpackPolygonHierarchy( array, startingIndex ); startingIndex = holes[j].startingIndex; delete holes[j].startingIndex; } return { positions: positions, holes: holes, startingIndex: startingIndex, }; }; var distanceScratch = new Cartesian2.Cartesian3(); function getPointAtDistance(p0, p1, distance, length) { Cartesian2.Cartesian3.subtract(p1, p0, distanceScratch); Cartesian2.Cartesian3.multiplyByScalar( distanceScratch, distance / length, distanceScratch ); Cartesian2.Cartesian3.add(p0, distanceScratch, distanceScratch); return [distanceScratch.x, distanceScratch.y, distanceScratch.z]; } PolygonGeometryLibrary.subdivideLineCount = function (p0, p1, minDistance) { var distance = Cartesian2.Cartesian3.distance(p0, p1); var n = distance / minDistance; var countDivide = Math.max(0, Math.ceil(_Math.CesiumMath.log2(n))); return Math.pow(2, countDivide); }; var scratchCartographic0 = new Cartesian2.Cartographic(); var scratchCartographic1 = new Cartesian2.Cartographic(); var scratchCartographic2 = new Cartesian2.Cartographic(); var scratchCartesian0 = new Cartesian2.Cartesian3(); PolygonGeometryLibrary.subdivideRhumbLineCount = function ( ellipsoid, p0, p1, minDistance ) { var c0 = ellipsoid.cartesianToCartographic(p0, scratchCartographic0); var c1 = ellipsoid.cartesianToCartographic(p1, scratchCartographic1); var rhumb = new EllipsoidRhumbLine.EllipsoidRhumbLine(c0, c1, ellipsoid); var n = rhumb.surfaceDistance / minDistance; var countDivide = Math.max(0, Math.ceil(_Math.CesiumMath.log2(n))); return Math.pow(2, countDivide); }; PolygonGeometryLibrary.subdivideLine = function (p0, p1, minDistance, result) { var numVertices = PolygonGeometryLibrary.subdivideLineCount( p0, p1, minDistance ); var length = Cartesian2.Cartesian3.distance(p0, p1); var distanceBetweenVertices = length / numVertices; if (!when.defined(result)) { result = []; } var positions = result; positions.length = numVertices * 3; var index = 0; for (var i = 0; i < numVertices; i++) { var p = getPointAtDistance(p0, p1, i * distanceBetweenVertices, length); positions[index++] = p[0]; positions[index++] = p[1]; positions[index++] = p[2]; } return positions; }; PolygonGeometryLibrary.subdivideRhumbLine = function ( ellipsoid, p0, p1, minDistance, result ) { var c0 = ellipsoid.cartesianToCartographic(p0, scratchCartographic0); var c1 = ellipsoid.cartesianToCartographic(p1, scratchCartographic1); var rhumb = new EllipsoidRhumbLine.EllipsoidRhumbLine(c0, c1, ellipsoid); var n = rhumb.surfaceDistance / minDistance; var countDivide = Math.max(0, Math.ceil(_Math.CesiumMath.log2(n))); var numVertices = Math.pow(2, countDivide); var distanceBetweenVertices = rhumb.surfaceDistance / numVertices; if (!when.defined(result)) { result = []; } var positions = result; positions.length = numVertices * 3; var index = 0; for (var i = 0; i < numVertices; i++) { var c = rhumb.interpolateUsingSurfaceDistance( i * distanceBetweenVertices, scratchCartographic2 ); var p = ellipsoid.cartographicToCartesian(c, scratchCartesian0); positions[index++] = p.x; positions[index++] = p.y; positions[index++] = p.z; } return positions; }; var scaleToGeodeticHeightN1 = new Cartesian2.Cartesian3(); var scaleToGeodeticHeightN2 = new Cartesian2.Cartesian3(); var scaleToGeodeticHeightP1 = new Cartesian2.Cartesian3(); var scaleToGeodeticHeightP2 = new Cartesian2.Cartesian3(); PolygonGeometryLibrary.scaleToGeodeticHeightExtruded = function ( geometry, maxHeight, minHeight, ellipsoid, perPositionHeight ) { ellipsoid = when.defaultValue(ellipsoid, Cartesian2.Ellipsoid.WGS84); var n1 = scaleToGeodeticHeightN1; var n2 = scaleToGeodeticHeightN2; var p = scaleToGeodeticHeightP1; var p2 = scaleToGeodeticHeightP2; if ( when.defined(geometry) && when.defined(geometry.attributes) && when.defined(geometry.attributes.position) ) { var positions = geometry.attributes.position.values; var length = positions.length / 2; for (var i = 0; i < length; i += 3) { Cartesian2.Cartesian3.fromArray(positions, i, p); ellipsoid.geodeticSurfaceNormal(p, n1); p2 = ellipsoid.scaleToGeodeticSurface(p, p2); n2 = Cartesian2.Cartesian3.multiplyByScalar(n1, minHeight, n2); n2 = Cartesian2.Cartesian3.add(p2, n2, n2); positions[i + length] = n2.x; positions[i + 1 + length] = n2.y; positions[i + 2 + length] = n2.z; if (perPositionHeight) { p2 = Cartesian2.Cartesian3.clone(p, p2); } n2 = Cartesian2.Cartesian3.multiplyByScalar(n1, maxHeight, n2); n2 = Cartesian2.Cartesian3.add(p2, n2, n2); positions[i] = n2.x; positions[i + 1] = n2.y; positions[i + 2] = n2.z; } } return geometry; }; PolygonGeometryLibrary.polygonOutlinesFromHierarchy = function ( polygonHierarchy, scaleToEllipsoidSurface, ellipsoid ) { // create from a polygon hierarchy // Algorithm adapted from http://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf var polygons = []; var queue = new Queue(); queue.enqueue(polygonHierarchy); var i; var j; var length; while (queue.length !== 0) { var outerNode = queue.dequeue(); var outerRing = outerNode.positions; if (scaleToEllipsoidSurface) { length = outerRing.length; for (i = 0; i < length; i++) { ellipsoid.scaleToGeodeticSurface(outerRing[i], outerRing[i]); } } outerRing = arrayRemoveDuplicates.arrayRemoveDuplicates( outerRing, Cartesian2.Cartesian3.equalsEpsilon, true ); if (outerRing.length < 3) { continue; } var numChildren = outerNode.holes ? outerNode.holes.length : 0; // The outer polygon contains inner polygons for (i = 0; i < numChildren; i++) { var hole = outerNode.holes[i]; var holePositions = hole.positions; if (scaleToEllipsoidSurface) { length = holePositions.length; for (j = 0; j < length; ++j) { ellipsoid.scaleToGeodeticSurface(holePositions[j], holePositions[j]); } } holePositions = arrayRemoveDuplicates.arrayRemoveDuplicates( holePositions, Cartesian2.Cartesian3.equalsEpsilon, true ); if (holePositions.length < 3) { continue; } polygons.push(holePositions); var numGrandchildren = 0; if (when.defined(hole.holes)) { numGrandchildren = hole.holes.length; } for (j = 0; j < numGrandchildren; j++) { queue.enqueue(hole.holes[j]); } } polygons.push(outerRing); } return polygons; }; PolygonGeometryLibrary.polygonsFromHierarchy = function ( polygonHierarchy, projectPointsTo2D, scaleToEllipsoidSurface, ellipsoid ) { // create from a polygon hierarchy // Algorithm adapted from http://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf var hierarchy = []; var polygons = []; var queue = new Queue(); queue.enqueue(polygonHierarchy); while (queue.length !== 0) { var outerNode = queue.dequeue(); var outerRing = outerNode.positions; var holes = outerNode.holes; var i; var length; if (scaleToEllipsoidSurface) { length = outerRing.length; for (i = 0; i < length; i++) { ellipsoid.scaleToGeodeticSurface(outerRing[i], outerRing[i]); } } outerRing = arrayRemoveDuplicates.arrayRemoveDuplicates( outerRing, Cartesian2.Cartesian3.equalsEpsilon, true ); if (outerRing.length < 3) { continue; } var positions2D = projectPointsTo2D(outerRing); if (!when.defined(positions2D)) { continue; } var holeIndices = []; var originalWindingOrder = PolygonPipeline.PolygonPipeline.computeWindingOrder2D( positions2D ); if (originalWindingOrder === PolygonPipeline.WindingOrder.CLOCKWISE) { positions2D.reverse(); outerRing = outerRing.slice().reverse(); } var positions = outerRing.slice(); var numChildren = when.defined(holes) ? holes.length : 0; var polygonHoles = []; var j; for (i = 0; i < numChildren; i++) { var hole = holes[i]; var holePositions = hole.positions; if (scaleToEllipsoidSurface) { length = holePositions.length; for (j = 0; j < length; ++j) { ellipsoid.scaleToGeodeticSurface(holePositions[j], holePositions[j]); } } holePositions = arrayRemoveDuplicates.arrayRemoveDuplicates( holePositions, Cartesian2.Cartesian3.equalsEpsilon, true ); if (holePositions.length < 3) { continue; } var holePositions2D = projectPointsTo2D(holePositions); if (!when.defined(holePositions2D)) { continue; } originalWindingOrder = PolygonPipeline.PolygonPipeline.computeWindingOrder2D( holePositions2D ); if (originalWindingOrder === PolygonPipeline.WindingOrder.CLOCKWISE) { holePositions2D.reverse(); holePositions = holePositions.slice().reverse(); } polygonHoles.push(holePositions); holeIndices.push(positions.length); positions = positions.concat(holePositions); positions2D = positions2D.concat(holePositions2D); var numGrandchildren = 0; if (when.defined(hole.holes)) { numGrandchildren = hole.holes.length; } for (j = 0; j < numGrandchildren; j++) { queue.enqueue(hole.holes[j]); } } hierarchy.push({ outerRing: outerRing, holes: polygonHoles, }); polygons.push({ positions: positions, positions2D: positions2D, holes: holeIndices, }); } return { hierarchy: hierarchy, polygons: polygons, }; }; var computeBoundingRectangleCartesian2 = new Cartesian2.Cartesian2(); var computeBoundingRectangleCartesian3 = new Cartesian2.Cartesian3(); var computeBoundingRectangleQuaternion = new Transforms.Quaternion(); var computeBoundingRectangleMatrix3 = new Transforms.Matrix3(); PolygonGeometryLibrary.computeBoundingRectangle = function ( planeNormal, projectPointTo2D, positions, angle, result ) { var rotation = Transforms.Quaternion.fromAxisAngle( planeNormal, angle, computeBoundingRectangleQuaternion ); var textureMatrix = Transforms.Matrix3.fromQuaternion( rotation, computeBoundingRectangleMatrix3 ); var minX = Number.POSITIVE_INFINITY; var maxX = Number.NEGATIVE_INFINITY; var minY = Number.POSITIVE_INFINITY; var maxY = Number.NEGATIVE_INFINITY; var length = positions.length; for (var i = 0; i < length; ++i) { var p = Cartesian2.Cartesian3.clone(positions[i], computeBoundingRectangleCartesian3); Transforms.Matrix3.multiplyByVector(textureMatrix, p, p); var st = projectPointTo2D(p, computeBoundingRectangleCartesian2); if (when.defined(st)) { minX = Math.min(minX, st.x); maxX = Math.max(maxX, st.x); minY = Math.min(minY, st.y); maxY = Math.max(maxY, st.y); } } result.x = minX; result.y = minY; result.width = maxX - minX; result.height = maxY - minY; return result; }; PolygonGeometryLibrary.createGeometryFromPositions = function ( ellipsoid, polygon, granularity, perPositionHeight, vertexFormat, arcType ) { var indices = PolygonPipeline.PolygonPipeline.triangulate(polygon.positions2D, polygon.holes); /* If polygon is completely unrenderable, just use the first three vertices */ if (indices.length < 3) { indices = [0, 1, 2]; } var positions = polygon.positions; if (perPositionHeight) { var length = positions.length; var flattenedPositions = new Array(length * 3); var index = 0; for (var i = 0; i < length; i++) { var p = positions[i]; flattenedPositions[index++] = p.x; flattenedPositions[index++] = p.y; flattenedPositions[index++] = p.z; } var geometry = new GeometryAttribute.Geometry({ attributes: { position: new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE, componentsPerAttribute: 3, values: flattenedPositions, }), }, indices: indices, primitiveType: GeometryAttribute.PrimitiveType.TRIANGLES, }); if (vertexFormat.normal) { return GeometryPipeline.GeometryPipeline.computeNormal(geometry); } return geometry; } if (arcType === ArcType.ArcType.GEODESIC) { return PolygonPipeline.PolygonPipeline.computeSubdivision( ellipsoid, positions, indices, granularity ); } else if (arcType === ArcType.ArcType.RHUMB) { return PolygonPipeline.PolygonPipeline.computeRhumbLineSubdivision( ellipsoid, positions, indices, granularity ); } }; var computeWallIndicesSubdivided = []; var p1Scratch = new Cartesian2.Cartesian3(); var p2Scratch = new Cartesian2.Cartesian3(); PolygonGeometryLibrary.computeWallGeometry = function ( positions, ellipsoid, granularity, perPositionHeight, arcType ) { var edgePositions; var topEdgeLength; var i; var p1; var p2; var length = positions.length; var index = 0; if (!perPositionHeight) { var minDistance = _Math.CesiumMath.chordLength( granularity, ellipsoid.maximumRadius ); var numVertices = 0; if (arcType === ArcType.ArcType.GEODESIC) { for (i = 0; i < length; i++) { numVertices += PolygonGeometryLibrary.subdivideLineCount( positions[i], positions[(i + 1) % length], minDistance ); } } else if (arcType === ArcType.ArcType.RHUMB) { for (i = 0; i < length; i++) { numVertices += PolygonGeometryLibrary.subdivideRhumbLineCount( ellipsoid, positions[i], positions[(i + 1) % length], minDistance ); } } topEdgeLength = (numVertices + length) * 3; edgePositions = new Array(topEdgeLength * 2); for (i = 0; i < length; i++) { p1 = positions[i]; p2 = positions[(i + 1) % length]; var tempPositions; if (arcType === ArcType.ArcType.GEODESIC) { tempPositions = PolygonGeometryLibrary.subdivideLine( p1, p2, minDistance, computeWallIndicesSubdivided ); } else if (arcType === ArcType.ArcType.RHUMB) { tempPositions = PolygonGeometryLibrary.subdivideRhumbLine( ellipsoid, p1, p2, minDistance, computeWallIndicesSubdivided ); } var tempPositionsLength = tempPositions.length; for (var j = 0; j < tempPositionsLength; ++j, ++index) { edgePositions[index] = tempPositions[j]; edgePositions[index + topEdgeLength] = tempPositions[j]; } edgePositions[index] = p2.x; edgePositions[index + topEdgeLength] = p2.x; ++index; edgePositions[index] = p2.y; edgePositions[index + topEdgeLength] = p2.y; ++index; edgePositions[index] = p2.z; edgePositions[index + topEdgeLength] = p2.z; ++index; } } else { topEdgeLength = length * 3 * 2; edgePositions = new Array(topEdgeLength * 2); for (i = 0; i < length; i++) { p1 = positions[i]; p2 = positions[(i + 1) % length]; edgePositions[index] = edgePositions[index + topEdgeLength] = p1.x; ++index; edgePositions[index] = edgePositions[index + topEdgeLength] = p1.y; ++index; edgePositions[index] = edgePositions[index + topEdgeLength] = p1.z; ++index; edgePositions[index] = edgePositions[index + topEdgeLength] = p2.x; ++index; edgePositions[index] = edgePositions[index + topEdgeLength] = p2.y; ++index; edgePositions[index] = edgePositions[index + topEdgeLength] = p2.z; ++index; } } length = edgePositions.length; var indices = IndexDatatype.IndexDatatype.createTypedArray( length / 3, length - positions.length * 6 ); var edgeIndex = 0; length /= 6; for (i = 0; i < length; i++) { var UL = i; var UR = UL + 1; var LL = UL + length; var LR = LL + 1; p1 = Cartesian2.Cartesian3.fromArray(edgePositions, UL * 3, p1Scratch); p2 = Cartesian2.Cartesian3.fromArray(edgePositions, UR * 3, p2Scratch); if ( Cartesian2.Cartesian3.equalsEpsilon( p1, p2, _Math.CesiumMath.EPSILON10, _Math.CesiumMath.EPSILON10 ) ) { //skip corner continue; } indices[edgeIndex++] = UL; indices[edgeIndex++] = LL; indices[edgeIndex++] = UR; indices[edgeIndex++] = UR; indices[edgeIndex++] = LL; indices[edgeIndex++] = LR; } return new GeometryAttribute.Geometry({ attributes: new GeometryAttributes.GeometryAttributes({ position: new GeometryAttribute.GeometryAttribute({ componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE, componentsPerAttribute: 3, values: edgePositions, }), }), indices: indices, primitiveType: GeometryAttribute.PrimitiveType.TRIANGLES, }); }; exports.PolygonGeometryLibrary = PolygonGeometryLibrary; }); //# sourceMappingURL=PolygonGeometryLibrary-98a03962.js.map